ترغب بنشر مسار تعليمي؟ اضغط هنا

We study geometric set cover problems in dynamic settings, allowing insertions and deletions of points and objects. We present the first dynamic data structure that can maintain an $O(1)$-approximation in sublinear update time for set cover for axis- aligned squares in 2D. More precisely, we obtain randomized update time $O(n^{2/3+delta})$ for an arbitrarily small constant $delta>0$. Previously, a dynamic geometric set cover data structure with sublinear update time was known only for unit squares by Agarwal, Chang, Suri, Xiao, and Xue [SoCG 2020]. If only an approximate size of the solution is needed, then we can also obtain sublinear amortized update time for disks in 2D and halfspaces in 3D. As a byproduct, our techniques for dynamic set cover also yield an optimal randomized $O(nlog n)$-time algorithm for static set cover for 2D disks and 3D halfspaces, improving our earlier $O(nlog n(loglog n)^{O(1)})$ result [SoCG 2020].
We improve the running times of $O(1)$-approximation algorithms for the set cover problem in geometric settings, specifically, covering points by disks in the plane, or covering points by halfspaces in three dimensions. In the unweighted case, Agarwa l and Pan [SoCG 2014] gave a randomized $O(nlog^4 n)$-time, $O(1)$-approximation algorithm, by using variants of the multiplicative weight update (MWU) method combined with geometric data structures. We simplify the data structure requirement in one of their methods and obtain a deterministic $O(nlog^3 nloglog n)$-time algorithm. With further new ideas, we obtain a still faster randomized $O(nlog n(loglog n)^{O(1)})$-time algorithm. For the weighted problem, we also give a randomized $O(nlog^4nloglog n)$-time, $O(1)$-approximation algorithm, by simple modifications to the MWU method and the quasi-uniform sampling technique.
We present a number of new results about range searching for colored (or categorical) data: 1. For a set of $n$ colored points in three dimensions, we describe randomized data structures with $O(nmathop{rm polylog}n)$ space that can report the dist inct colors in any query orthogonal range (axis-aligned box) in $O(kmathop{rm polyloglog} n)$ expected time, where $k$ is the number of distinct colors in the range, assuming that coordinates are in ${1,ldots,n}$. Previous data structures require $O(frac{log n}{loglog n} + k)$ query time. Our result also implies improvements in higher constant dimensions. 2. Our data structures can be adapted to halfspace ranges in three dimensions (or circular ranges in two dimensions), achieving $O(klog n)$ expected query time. Previous data structures require $O(klog^2n)$ query time. 3. For a set of $n$ colored points in two dimensions, we describe a data structure with $O(nmathop{rm polylog}n)$ space that can answer colored type-2 range counting queries: report the number of occurrences of every distinct color in a query orthogonal range. The query time is $O(frac{log n}{loglog n} + kloglog n)$, where $k$ is the number of distinct colors in the range. Naively performing $k$ uncolored range counting queries would require $O(kfrac{log n}{loglog n})$ time. Our data structures are designed using a variety of techniques, including colored variants of randomized incremental construction (which may be of independent interest), colored variants of shallow cuttings, and bit-packing tricks.
349 - Qizheng He , Jianan Wu , Gang Yu 2017
In this paper we present a robust tracker to solve the multiple object tracking (MOT) problem, under the framework of tracking-by-detection. As the first contribution, we innovatively combine single object tracking (SOT) algorithms with multiple obje ct tracking algorithms, and our results show that SOT is a general way to strongly reduce the number of false negatives, regardless of the quality of detection. Another contribution is that we show with a deep learning based appearance model, it is easy to associate detections of the same object efficiently and also with high accuracy. This appearance model plays an important role in our MOT algorithm to correctly associate detections into long trajectories, and also in our SOT algorithm to discover new detections mistakenly missed by the detector. The deep neural network based model ensures the robustness of our tracking algorithm, which can perform data association in a wide variety of scenes. We ran comprehensive experiments on a large-scale and challenging dataset, the MOT16 benchmark, and results showed that our tracker achieved state-of-the-art performance based on both public and private detections.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا