ترغب بنشر مسار تعليمي؟ اضغط هنا

The ubiquity of deep neural networks (DNNs), cloud-based training, and transfer learning is giving rise to a new cybersecurity frontier in which unsecure DNNs have `structural malware (i.e., compromised weights and activation pathways). In particular , DNNs can be designed to have backdoors that allow an adversary to easily and reliably fool an image classifier by adding a pattern of pixels called a trigger. It is generally difficult to detect backdoors, and existing detection methods are computationally expensive and require extensive resources (e.g., access to the training data). Here, we propose a rapid feature-generation technique that quantifies the robustness of a DNN, `fingerprints its nonlinearity, and allows us to detect backdoors (if present). Our approach involves studying how a DNN responds to noise-infused images with varying noise intensity, which we summarize with titration curves. We find that DNNs with backdoors are more sensitive to input noise and respond in a characteristic way that reveals the backdoor and where it leads (its `target). Our empirical results demonstrate that we can accurately detect backdoors with high confidence orders-of-magnitude faster than existing approaches (seconds versus hours).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا