ترغب بنشر مسار تعليمي؟ اضغط هنا

Counting the repetition of human exercise and physical rehabilitation is a common task in rehabilitation and exercise training. The existing vision-based repetition counting methods less emphasize the concurrent motions in the same video. This work p resents a vision-based human motion repetition counting applicable to counting concurrent motions through the skeleton location extracted from various pose estimation methods. The presented method was validated on the University of Idaho Physical Rehabilitation Movements Data Set (UI-PRMD), and MM-fit dataset. The overall mean absolute error (MAE) for mm-fit was 0.06 with off-by-one Accuracy (OBOA) 0.94. Overall MAE for UI-PRMD dataset was 0.06 with OBOA 0.95. We have also tested the performance in a variety of camera locations and concurrent motions with conveniently collected video with overall MAE 0.06 and OBOA 0.88. The proposed method provides a view-angle and motion agnostic concurrent motion counting. This method can potentially use in large-scale remote rehabilitation and exercise training with only one camera.
The COVID-19 pandemic has caused a dramatic surge in demand for personal protective equipment (PPE) worldwide. Many countries have imposed export restrictions on PPE to ensure the sufficient domestic supply. The surging demand and export restrictions cause shortage contagions on the global PPE trade network. Here, we develop an integrated network model, which integrates a metapopulation model and a threshold model, to investigate the shortage contagion patterns. The metapopulation model captures disease contagion across countries. The threshold model captures the shortage contagion on the global PPE trade network. Results show that, the shortage contagion patterns are mainly decided by top exporters. Export restrictions exacerbate the shortages of PPE and cause the shortage contagion to transmit even faster than the disease contagion. Besides, export restrictions lead to ineffective and inefficient allocation of PPE around the world, which has no benefits for the world to fight against the pandemic.
There are often multiple diseases with cross immunity competing for vaccination resources. Here we investigate the optimal vaccination program in a two-layer Susceptible-Infected-Removed (SIR) model, where two diseases with cross immunity spread in t he same population, and vaccines for both diseases are available. We identify three scenarios of the optimal vaccination program, which prevents the outbreaks of both diseases at the minimum cost. We analytically derive a criterion to specify the optimal program based on the costs for different vaccines.
A hybrid simulation-based framework involving system dynamics and agent-based simulation is proposed to address duopoly game considering multiple strategic decision variables and rich payoff, which cannot be addressed by traditional approaches involv ing closed-form equations. While system dynamics models are used to represent integrated production, logistics, and pricing determination activities of duopoly companies, agent-based simulation is used to mimic enhanced consumer purchasing behavior considering advertisement, promotion effect, and acquaintance recommendation in the consumer social network. The payoff function of the duopoly companies is assumed to be the net profit based on the total revenue and various cost items such as raw material, production, transportation, inventory and backorder. A unique procedure is proposed to solve and analyze the proposed simulation-based game, where the procedural components include strategy refinement, data sampling, gaming solving, and performance evaluation. First, design of experiment and estimated conformational value of information techniques are employed for strategy refinement and data sampling, respectively. Game solving then focuses on pure strategy equilibriums, and performance evaluation addresses game stability, equilibrium strictness, and robustness. A hypothetical case scenario involving soft-drink duopoly on Coke and Pepsi is considered to illustrate and demonstrate the proposed approach. Final results include P-values of statistical tests, confidence intervals, and simulation steady state analysis for different pure equilibriums.
Motivated by the importance of individual differences in risk perception and behavior change in peoples responses to infectious disease outbreaks (particularly the ongoing COVID-19 pandemic), we propose a heterogeneous Disease-Behavior-Information (h DBI) transmission model, in which peoples risk of getting infected is influenced by information diffusion, behavior change, and disease transmission. We use both a mean-field approximation and Monte Carlo simulations to analyze the dynamics of the model. Information diffusion influences behavior change by allowing people to be aware of the disease and adopt self-protection, and subsequently affects disease transmission by changing the actual infection rate. Results show that (a) awareness plays a central role in epidemic prevention; (b) a reasonable fraction of over-reacting nodes are needed in epidemic prevention; (c) R0 has different effects on epidemic outbreak for cases with and without asymptomatic infection; (d) social influence on behavior change can remarkably decrease the epidemic outbreak size. This research indicates that the media and opinion leaders should not understate the transmissibility and severity of diseases to ensure that people could become aware of the disease and adopt self-protection to protect themselves and the whole population.
Most existing interpretable methods explain a black-box model in a post-hoc manner, which uses simpler models or data analysis techniques to interpret the predictions after the model is learned. However, they (a) may derive contradictory explanations on the same predictions given different methods and data samples, and (b) focus on using simpler models to provide higher descriptive accuracy at the sacrifice of prediction accuracy. To address these issues, we propose a hybrid interpretable model that combines a piecewise linear component and a nonlinear component. The first component describes the explicit feature contributions by piecewise linear approximation to increase the expressiveness of the model. The other component uses a multi-layer perceptron to capture feature interactions and implicit nonlinearity, and increase the prediction performance. Different from the post-hoc approaches, the interpretability is obtained once the model is learned in the form of feature shapes. We also provide a variant to explore higher-order interactions among features to demonstrate that the proposed model is flexible for adaptation. Experiments demonstrate that the proposed model can achieve good interpretability by describing feature shapes while maintaining state-of-the-art accuracy.
Machine learning has recently been widely adopted to address the managerial decision making problems, in which the decision maker needs to be able to interpret the contributions of individual attributes in an explicit form. However, there is a trade- off between performance and interpretability. Full complexity models are non-traceable black-box, whereas classic interpretable models are usually simplified with lower accuracy. This trade-off limits the application of state-of-the-art machine learning models in management problems, which requires high prediction performance, as well as the understanding of individual attributes contributions to the model outcome. Multiple criteria decision aiding (MCDA) is a family of analytic approaches to depicting the rationale of human decision. It is also limited by strong assumptions. To meet the decision makers demand for more interpretable machine learning models, we propose a novel hybrid method, namely Neural Network-based Multiple Criteria Decision Aiding, which combines an additive value model and a fully-connected multilayer perceptron (MLP) to achieve good performance while capturing the explicit relationships between individual attributes and the prediction. NN-MCDA has a linear component to characterize such relationships through providing explicit marginal value functions, and a nonlinear component to capture the implicit high-order interactions between attributes and their complex nonlinear transformations. We demonstrate the effectiveness of NN-MCDA with extensive simulation studies and three real-world datasets. To the best of our knowledge, this research is the first to enhance the interpretability of machine learning models with MCDA techniques. The proposed framework also sheds light on how to use machine learning techniques to free MCDA from strong assumptions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا