ترغب بنشر مسار تعليمي؟ اضغط هنا

In many unconventional superconductors, the pairing of electrons is driven by the repulsive interaction, which leads to the sign reversal of superconducting gaps along the Fermi surfaces (FS) or between them. However, to measure this sign change is n ot easy and straightforward. It is known that, in superconductors with sign reversal gaps, non-magnetic impurities can break Cooper pairs leading to the quasiparticle density of states in the superconducting state. The standing waves of these quasiparticles will interfere each other leading to the quasiparticle interference (QPI) pattern which carries the phase message reflecting also the superconducting gap structure. Based on the recently proposed defect-bound-state QPI technique, we explore the applicability of this technique to a typical iron based superconductor FeTe$_{0.55}$Se$_{0.45}$ with roughly equivalent gap values on the electron and hole pockets connected by the wave vector q_2=(0,pi). It is found that, on the negative energy side, with the energy slightly below the gap value, the phase reference quantity $|g(q,-E)|cos(theta_{q,+E}-theta_{q,-E}) becomes negative and the amplitude is strongly enhanced with the scattering vector q_2, but that corresponding to the scattering between the electron-electron pockets, namely q_3=(pi,pi), keeps all positive. This is well consistent with the theoretical expectation of the s^+- pairing gap and thus serves as a direct visualization of the sign reversal gaps. This experimental observation is also supported by the theoretical calculations with the Fermi surface structure and s^+- pairing gap.
The superconducting state is achieved by the condensation of Cooper pairs and is protected by the superconducting gap. The pairing interaction between the two electrons of a Cooper pair determines the superconducting gap function. Thus, it is very pi votal to detect the gap structure for understanding the mechanism of superconductivity. In cuprate superconductors, it has been well established that the superconducting gap may have a d-wave function {Delta} = {Delta}_0cos2{theta}. This gap function has an alternative sign change by every pi/2 in the momentum space when the in-plane azimuthal angle theta is scanned. It is very hard to visualize this sign change. Early experiments for recommending or proving this d-wave gap function were accomplished by the specially designed phase sensitive measurements based on the Josephson effect. Here we report the measurements of scanning tunneling spectroscopy in one of the model cuprate system Bi2Sr2CaCu2O8+{delta} and conduct the analysis of phase-referenced quasiparticle interference (QPI). Due to the unique quasiparticle excitations in the superconducting state of cuprate, we have seen the seven basic scattering vectors that connect each pair of the terminals of the banana-shaped contour of constant quasiparticle energy (CCE). The phase-referenced QPI clearly visualizes the sign change of the d-wave gap. Our results illustrate a very effective way for determining the sign change of unconventional superconductors.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا