ترغب بنشر مسار تعليمي؟ اضغط هنا

340 - Sin Kit Lo , Yue Liu , Qinghua Lu 2021
Federated learning is an emerging privacy-preserving AI technique where clients (i.e., organisations or devices) train models locally and formulate a global model based on the local model updates without transferring local data externally. However, f ederated learning systems struggle to achieve trustworthiness and embody responsible AI principles. In particular, federated learning systems face accountability and fairness challenges due to multi-stakeholder involvement and heterogeneity in client data distribution. To enhance the accountability and fairness of federated learning systems, we present a blockchain-based trustworthy federated learning architecture. We first design a smart contract-based data-model provenance registry to enable accountability. Additionally, we propose a weighted fair data sampler algorithm to enhance fairness in training data. We evaluate the proposed approach using a COVID-19 X-ray detection use case. The evaluation results show that the approach is feasible to enable accountability and improve fairness. The proposed algorithm can achieve better performance than the default federated learning setting in terms of the models generalisation and accuracy.
Federated learning is an emerging machine learning paradigm that enables multiple devices to train models locally and formulate a global model, without sharing the clients local data. A federated learning system can be viewed as a large-scale distrib uted system, involving different components and stakeholders with diverse requirements and constraints. Hence, developing a federated learning system requires both software system design thinking and machine learning knowledge. Although much effort has been put into federated learning from the machine learning perspectives, our previous systematic literature review on the area shows that there is a distinct lack of considerations for software architecture design for federated learning. In this paper, we propose FLRA, a reference architecture for federated learning systems, which provides a template design for federated learning-based solutions. The proposed FLRA reference architecture is based on an extensive review of existing patterns of federated learning systems found in the literature and existing industrial implementation. The FLRA reference architecture consists of a pool of architectural patterns that could address the frequently recurring design problems in federated learning architectures. The FLRA reference architecture can serve as a design guideline to assist architects and developers with practical solutions for their problems, which can be further customised.
113 - Liming Zhu , Xiwei Xu , Qinghua Lu 2021
In the last few years, AI continues demonstrating its positive impact on society while sometimes with ethically questionable consequences. Building and maintaining public trust in AI has been identified as the key to successful and sustainable innova tion. This chapter discusses the challenges related to operationalizing ethical AI principles and presents an integrated view that covers high-level ethical AI principles, the general notion of trust/trustworthiness, and product/process support in the context of responsible AI, which helps improve both trust and trustworthiness of AI for a wider set of stakeholders.
102 - Yue Liu , Qinghua Lu , Liming Zhu 2021
Blockchain has been increasingly used as a software component to enable decentralisation in software architecture for a variety of applications. Blockchain governance has received considerable attention to ensure the safe and appropriate use and evol ution of blockchain, especially after the Ethereum DAO attack in 2016. To understand the state-of-the-art of blockchain governance and provide an actionable guidance for academia and practitioners, in this paper, we conduct a systematic literature review, identifying 34 primary studies. Our study comprehensively investigates blockchain governance via 5W1H questions. The study results reveal several major findings: 1) the adaptation and upgrade of blockchain are the primary purposes of blockchain governance, while both software quality attributes and human value attributes need to be increasingly considered; 2) blockchain governance mainly relies on the project team, node operators, and users of a blockchain platform; and 3) existing governance solutions can be classified into process mechanisms and product mechanisms, which mainly focus on the operation phase over the blockchain platform layer.
Federated learning (FL) brings collaborative intelligence into industries without centralized training data to accelerate the process of Industry 4.0 on the edge computing level. FL solves the dilemma in which enterprises wish to make the use of data intelligence with security concerns. To accelerate industrial Internet of things with the further leverage of FL, existing achievements on FL are developed from three aspects: 1) define terminologies and elaborate a general framework of FL for accommodating various scenarios; 2) discuss the state-of-the-art of FL on fundamental researches including data partitioning, privacy preservation, model optimization, local model transportation, personalization, motivation mechanism, platform & tools, and benchmark; 3) discuss the impacts of FL from the economic perspective. To attract more attention from industrial academia and practice, a FL-transformed manufacturing paradigm is presented, and future research directions of FL are given and possible immediate applications in Industry 4.0 domain are also proposed.
As the killer application of blockchain technology, blockchain-based payments have attracted extensive attention ranging from hobbyists to corporates to regulatory bodies. Blockchain facilitates fast, secure, and cross-border payments without the nee d for intermediaries such as banks. Because blockchain technology is still emerging, systematically organised knowledge providing a holistic and comprehensive view on designing payment applications that use blockchain is yet to be established. If such knowledge could be established in the form of a set of blockchain-specific patterns, architects could use those patterns in designing a payment application that leverages blockchain. Therefore, in this paper, we first identify a tokens lifecycle and then present 12 patterns that cover critical aspects in enabling the state transitions of a token in blockchain-based payment applications. The lifecycle and the annotated patterns provide a payment-focused systematic view of system interactions and a guide to effective use of the patterns.
Federated learning has received fast-growing interests from academia and industry to tackle the challenges of data hungriness and privacy in machine learning. A federated learning system can be viewed as a large-scale distributed system with differen t components and stakeholders as numerous client devices participate in federated learning. Designing a federated learning system requires software system design thinking apart from machine learning knowledge. Although much effort has been put into federated learning from the machine learning technique aspects, the software architecture design concerns in building federated learning systems have been largely ignored. Therefore, in this paper, we present a collection of architectural patterns to deal with the design challenges of federated learning systems. Architectural patterns present reusable solutions to a commonly occurring problem within a given context during software architecture design. The presented patterns are based on the results of a systematic literature review and include three client management patterns, four model management patterns, three model training patterns, and four model aggregation patterns. The patterns are associated to the particular state transitions in a federated learning model lifecycle, serving as a guidance for effective use of the patterns in the design of federated learning systems.
Medical diagnostic image analysis (e.g., CT scan or X-Ray) using machine learning is an efficient and accurate way to detect COVID-19 infections. However, sharing diagnostic images across medical institutions is usually not allowed due to the concern of patients privacy. This causes the issue of insufficient datasets for training the image classification model. Federated learning is an emerging privacy-preserving machine learning paradigm that produces an unbiased global model based on the received updates of local models trained by clients without exchanging clients local data. Nevertheless, the default setting of federated learning introduces huge communication cost of transferring model updates and can hardly ensure model performance when data heterogeneity of clients heavily exists. To improve communication efficiency and model performance, in this paper, we propose a novel dynamic fusion-based federated learning approach for medical diagnostic image analysis to detect COVID-19 infections. First, we design an architecture for dynamic fusion-based federated learning systems to analyse medical diagnostic images. Further, we present a dynamic fusion method to dynamically decide the participating clients according to their local model performance and schedule the model fusion-based on participating clients training time. In addition, we summarise a category of medical diagnostic image datasets for COVID-19 detection, which can be used by the machine learning community for image analysis. The evaluation results show that the proposed approach is feasible and performs better than the default setting of federated learning in terms of model performance, communication efficiency and fault tolerance.
Massive amounts of multimedia data (i.e., text, audio, video, graphics and animation) are being generated everyday. Conventionally, multimedia data are managed by the platforms maintained by multimedia service providers, which are generally designed using centralised architecture. However, such centralised architecture may lead to a single point of failure and disputes over royalties or other rights. It is hard to ensure the data integrity and track fulfilment of obligations listed on the copyright agreement. To tackle these issues, in this paper, we present a blockchain-based platform architecture for multimedia data management. We adopt self-sovereign identity for identity management and design a multi-level capability-based mechanism for access control. We implement a proof-of-concept prototype using the proposed approach and evaluate it using a use case. The results show that the proposed approach is feasible and has scalable performance.
Device failure detection is one of most essential problems in industrial internet of things (IIoT). However, in conventional IIoT device failure detection, client devices need to upload raw data to the central server for model training, which might l ead to disclosure of sensitive business data. Therefore, in this paper, to ensure client data privacy, we propose a blockchain-based federated learning approach for device failure detection in IIoT. First, we present a platform architecture of blockchain-based federated learning systems for failure detection in IIoT, which enables verifiable integrity of client data. In the architecture, each client periodically creates a Merkle tree in which each leaf node represents a client data record, and stores the tree root on a blockchain. Further, to address the data heterogeneity issue in IIoT failure detection, we propose a novel centroid distance weighted federated averaging (CDW_FedAvg) algorithm taking into account the distance between positive class and negative class of each client dataset. In addition, to motivate clients to participate in federated learning, a smart contact based incentive mechanism is designed depending on the size and the centroid distance of client data used in local model training. A prototype of the proposed architecture is implemented with our industry partner, and evaluated in terms of feasibility, accuracy and performance. The results show that the approach is feasible, and has satisfactory accuracy and performance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا