ترغب بنشر مسار تعليمي؟ اضغط هنا

We simulate evolution of cometary H II regions based on several champagne flow models and bow shock models, and calculate the profiles of the [Ne II] fine-structure line at $12.81mu m$, the $H30alpha$ recombination line and the [Ne III] fine-structur e line at $15.55mu m$ for these models at different inclinations of $0^o, 30^o textrm{and} 60^o$. We find that the profiles in the bow shock models are generally different from those in the champagne flow models, but the profiles in the bow shock with lower stellar velocity ($leq5km s^{-1}$) are similar to those in the champagne flow models. In champagne flow models, both the velocity of peak flux and the flux weighted central velocities of all three lines are pointing outward from molecular clouds. In bow shock models, the directions of these velocities rely on the speed of stars. They have the similar motion in high stellar speed case but opposite directions in low stellar speed case. We notice that the line profiles from the slit along the symmetrical axis of the projected 2D image of these models are useful for distinguishing bow shock models and champagne flow models. It is also confirmed by the calculation that the flux weighted central velocity and the line luminosity of the [Ne III] line can be estimated from the [Ne II] line and the $H30alpha$ line.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا