ترغب بنشر مسار تعليمي؟ اضغط هنا

Time operator is studied on the basis of field quantization, where the difficulty stemming from Paulis theorem is circumvented by borrowing ideas from the covariant quantization of the bosonic string, i.e., one can remove the negative energy states b y imposing Virasoro constraints. Applying the index theorem, one can show that in a different subspace of a Fock space, there is a different self-adjoint time operator. However, the self-adjoint time operator in the maximal subspace of the Fock space can also represent the self-adjoint time operator in the other subspaces, such that it can be taken as the single, universal time operator. Furthermore, a new insight on Paulis theorem is presented.
In term of the volume-integrated Poynting vector, we present a quantum field-theory investigation on the zitterbewegung (ZB) of photons, and show that this ZB occurs only in the presence of virtual longitudinal and scalar photons. To present a heuris tic explanation for such ZB, by assuming that the space time is sufficiently close to the flat Minkowski space, we show that the gravitational interaction can result in the ZB of photons.
The Hawking radiation can be viewed from very different perspectives, not all of which can be proved to be rigorously equivalent to one another. On the other hand, an old interest in the zitterbewegung (ZB) of the Dirac electron has recently been rek indled by the investigations on spintronics and graphene, etc. In this letter, we show that, if particles emitted by black holes are electrons or positrons, one can also regard the Hawking radiation as a ZB process.
Many theoretical and experimental investigations have presented a conclusion that evanescent electromagnetic modes can superluminally propagate. However, in this paper, we show that the average energy velocity of evanescent modes inside a cut-off wav eguide is always less than or equal to the velocity of light in vacuum, while the instantaneous energy velocity can be superluminal, which does not violate causality according to quantum field theory: the fact that a particle can propagate over a space-like interval does preserve causality provided that here a measurement performed at one point cannot affect another measurement at a point separated from the first with a space-like interval.
In terms of a photon wave function corresponding to the (1, 0)+(0, 1) representation of the Lorentz group, the radiation and Coulomb fields within a source-free region can be described unitedly by a Lorentz-covariant Dirac-like equation. In our forma lism, the relation between the positive- and negative-energy solutions of the Dirac-like equation corresponds to the duality between the electric and magnetic fields, rather than to the usual particle-antiparticle symmetry. The zitterbewegung (ZB) of photons is studied via the momentum vector of the electromagnetic field, which shows that only in the presence of virtual longitudinal and scalar photons, the ZB motion of photons can occur, and its vector property is described by the polarization vectors of the electromagnetic field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا