ترغب بنشر مسار تعليمي؟ اضغط هنا

The realization of spin-orbit coupling (SOC) in ultracold atoms has triggered an intensive exploring of topological superfluids in the degenerate Fermi gases based on mean-field theory, which has not yet been reported in experiments. Here, we demonst rate the topological phase transitions in the system via the numerically exact quantum Monte Carlo method. Without prior assumptions, our unbiased real-space calculation shows that spin-orbit coupling can stabilize an unconventional pairing in the weak SOC regime, in which the Fulde-Ferrell-Larkin-Ovchinnikov pairing coexists with the Bardeen-Cooper-Schrieffer pairing. Furthermore, we use the jumps in the spin polarization at the time-reversal invariant momenta to qualify the topological phase transition, where we find the critical exponent deviated from the mean-field theory. Our results pave the way for the searching of unconventional pairing and topological superfluids with degenerate Fermi gases.
Since the discovery of graphene, its excellent physical properties has greatly improved the performance of many optoelectronic devices and brought important technological revolution to optical research and application. Here, we introduce graphene int o the field of optical tweezers technology and demonstrate a new thermoelectric optical tweezers technology based on graphene. This technology can not only reduce the incident light energy by 2 orders of magnitude (compared with traditional optical tweezers), but also bring new advantages such as much broader working bandwidth and larger working area than the thermoelectric optical tweezers based on gold film widely studied before. Compared with gold film, graphene has more novel characteristics like high thermal conductivity, high uniformity and easy process. Thus, we found even monolayer graphene can achieve stable trapping for particles in a broad band, and the performance is enhanced with more graphene layers. Furthermore, structured graphene patterns can be easily generated to holographically trap multiple particles as desired shapes. This work verifies the great application potential of two-dimensional materials in op-tical tweezers technology, and it will promote more promising applications in cell trapping, tapping or concentration of biomolecules, microfluidics and biosensors.
Synthetic dimensions in photonic structures provide unique opportunities for actively manipulating light in multiple degrees of freedom. Here, we theoretically explore a dispersive waveguide under the dynamic phase modulation that supports single pul se manipulations in the synthetic (2+1) dimensions. Compared with the counterpart of the conventional (2+1) space-time, we explore temporal diffraction and frequency conversion in a synthetic time-frequency space while the pulse evolves along the spatial dimension. By introducing the effective gauge potential well for photons in the synthetic time-frequency space with the control of the modulation phase, we show that a rich set of pulse propagation behaviors can be achieved, including confined pulse propagation, fast/slow light, and pulse compression. With the additional nonlinear oscillation subject to the effective force along the frequency axis of light, we provide an exotic approach for actively manipulating the single pulse in both temporal and spectral domains, which shows the great promise for applications of the pulse processing and optical communications in integrated photonics.
The concept of synthetic dimensions in photonics has attracted rapidly growing interest in the past few years. Among a variety of photonic systems, the ring resonator system under dynamic modulation has been investigated in depth both in theory and e xperiment, and has proven to be a powerful way to build synthetic frequency dimensions. In this tutorial, we start with a pedagogical introduction to the theoretical approaches in describing the dynamically modulated ring resonator system, and then review experimental methods in building such a system. Moreover, we discuss important physical phenomena in synthetic dimensions, including nontrivial topological physics. Our tutorial provides a pathway towards studying the dynamically modulated ring resonator system, understanding synthetic dimensions in photonics, and discusses future prospects for both fundamental research and practical applications using synthetic dimensions.
Learning an accurate model of the environment is essential for model-based control tasks. Existing methods in robotic visuomotor control usually learn from data with heavily labelled actions, object entities or locations, which can be demanding in ma ny cases. To cope with this limitation, we propose a method, dubbed DMotion, that trains a forward model from video data only, via disentangling the motion of controllable agent to model the transition dynamics. An object extractor and an interaction learner are trained in an end-to-end manner without supervision. The agents motions are explicitly represented using spatial transformation matrices containing physical meanings. In the experiments, DMotion achieves superior performance on learning an accurate forward model in a Grid World environment, as well as a more realistic robot control environment in simulation. With the accurate learned forward models, we further demonstrate their usage in model predictive control as an effective approach for robotic manipulations.
139 - Wenmeng Yu , Hua Xu , Ziqi Yuan 2021
Representation Learning is a significant and challenging task in multimodal learning. Effective modality representations should contain two parts of characteristics: the consistency and the difference. Due to the unified multimodal annotation, existi ng methods are restricted in capturing differentiated information. However, additional uni-modal annotations are high time- and labor-cost. In this paper, we design a label generation module based on the self-supervised learning strategy to acquire independent unimodal supervisions. Then, joint training the multi-modal and uni-modal tasks to learn the consistency and difference, respectively. Moreover, during the training stage, we design a weight-adjustment strategy to balance the learning progress among different subtasks. That is to guide the subtasks to focus on samples with a larger difference between modality supervisions. Last, we conduct extensive experiments on three public multimodal baseline datasets. The experimental results validate the reliability and stability of auto-generated unimodal supervisions. On MOSI and MOSEI datasets, our method surpasses the current state-of-the-art methods. On the SIMS dataset, our method achieves comparable performance than human-annotated unimodal labels. The full codes are available at https://github.com/thuiar/Self-MM.
96 - Dan Lin , Jiajing Wu , Qi Yuan 2020
As the largest public blockchain-based platform supporting smart contracts, Ethereum has accumulated a large number of user transaction records since its debut in 2014. Analysis of Ethereum transaction records, however, is still relatively unexplored till now. Modeling the transaction records as a static simple graph, existing methods are unable to accurately characterize the temporal and multiplex features of the edges. In this brief, we first model the Ethereum transaction records as a complex network by incorporating time and amount features of the transactions, and then design several flexible temporal walk strategies for random-walk based graph representation of this large-scale network. Experiments of temporal link prediction on real Ethereum data demonstrate that temporal information and multiplicity characteristic of edges are indispensable for accurate modeling and understanding of Ethereum transaction networks.
368 - Daniel Leykam , Luqi Yuan 2020
Topological photonics has emerged as a novel paradigm for the design of electromagnetic systems from microwaves to nanophotonics. Studies to date have largely focused on the demonstration of fundamental concepts, such as non-reciprocity and waveguidi ng protected against fabrication disorder. Moving forward, there is a pressing need to identify applications where topological designs can lead to useful improvements in device performance. Here we review applications of topological photonics to ring resonator-based systems, including one- and two-dimensional resonator arrays, and dynamically-modulated resonators. We evaluate potential applications such as quantum light generation, disorder-robust delay lines, and optical isolation, as well as future research directions and open problems that need to be addressed.
125 - Avik Dutt , Qian Lin , Luqi Yuan 2019
The concept of synthetic dimensions, which has enabled the study of higher-dimensional physics on lower-dimensional physical structures, has generated significant recent interest in many branches of science ranging from ultracold-atomic physics to ph otonics, since such a concept provides a versatile platform for realizing effective gauge potentials and novel topological physics. Previous experiments demonstrating this concept have augmented the real-space dimensionality by one additional physical synthetic dimension. Here we endow a single ring resonator with two independent physical synthetic dimensions. Our system consists of a temporally modulated ring resonator with spatial coupling between the clockwise and counterclockwise modes, creating a synthetic Hall ladder along the frequency and pseudospin degrees of freedom for photons propagating in the ring. We experimentally observe a wide variety of rich physics, including effective spin-orbit coupling, magnetic fields, spin-momentum locking, a Meissner-to-vortex phase transition, and chiral currents, completely in synthetic dimensions. Our experiments demonstrate that higher-dimensional physics can be studied in simple systems by leveraging the concept of multiple simultaneous synthetic dimensions.
A nematic topological superconductor has an order parameter symmetry, which spontaneously breaks the crystalline symmetry in its superconducting state. This state can be observed, for example, by thermodynamic or upper critical field experiments in w hich a magnetic field is rotated with respect to the crystalline axes. The corresponding physical quantity then directly reflects the symmetry of the order parameter. We present a study on the superconducting upper critical field of the Nb-doped topological insulator NbxBi2Se3 for various magnetic field orientations parallel and perpendicular to the basal plane of the Bi2Se3 layers. The data were obtained by two complementary experimental techniques, magnetoresistance and DC magnetization, on three different single crystalline samples of the same batch. Both methods and all samples show with perfect agreement that the in-plane upper critical fields clearly demonstrate a two-fold symmetry that breaks the three-fold crystal symmetry. The two-fold symmetry is also found in the absolute value of the magnetization of the initial zero-field-cooled branch of the hysteresis loop and in the value of the thermodynamic contribution above the irreversibility field, but also in the irreversible properties such as the value of the characteristic irreversibility field and in the width of the hysteresis loop. This provides strong experimental evidence that Nb-doped Bi2Se3 is a nematic topological superconductor similar to the Cu- and Sr-doped Bi2Se3.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا