ترغب بنشر مسار تعليمي؟ اضغط هنا

157 - Q. R. Zhang , B. Zeng , Y. C. Chiu 2017
We evaluate the topological character of TaAs through a detailed study of the angular, magnetic-field and temperature dependence of its magnetoresistivity and Hall-effect(s), and of its bulk electronic structure through quantum oscillatory phenomena. At low temperatures, and for fields perpendicular to the electrical current, we extract an extremely large Hall angle $Theta_H$ at higher fields, that is $Theta_H sim 82.5^{circ}$, implying a very pronounced Hall signal superimposed into its magnetoresistivity. For magnetic fields and electrical currents perpendicular to the emph{c}-axis we observe a very pronounced planar Hall-effect, when the magnetic field is rotated within the basal plane. This effect is observed even at higher temperatures, i.e. as high as $T = 100$ K, and predicted recently to result from the chiral anomaly among Weyl points. Superimposed onto this planar Hall, which is an even function of the field, we observe an anomalous planar Hall-signal akin to the one reported for that is an odd function of the field. Below 100 K, negative longitudinal magnetoresistivity (LMR), initially ascribed to the chiral anomaly and subsequently to current inhomogeneities, is observed in samples having different geometries and contact configurations, once the large Hall signal is subtracted. Our measurements reveal a phase transition upon approaching the quantum limit that leads to the reconstruction of the FS and to the concomitant suppression of the negative LMR indicating that it is intrinsically associated with the Weyl dispersion at the Fermi level. For fields along the emph{a}-axis it also leads to a pronounced hysteresis pointing to a field-induced electronic phase-transition. This collection of unconventional tranport observations points to the prominent role played by the axial anomaly among Weyl nodes.
Here, we report a systematic study on the Hall-effect of the semi-metallic state of bulk MoTe$_2$, which was recently claimed to be a candidate for a novel type of Weyl semi-metallic state. The temperature ($T$) dependence of the carrier densities an d of their mobilities, as estimated from a numerical analysis based on the isotropic two-carrier model, indicates that its exceedingly large and non-saturating magnetoresistance may be attributed to a near perfect compensation between the densities of electrons and holes at low temperatures. A sudden increase in hole density, with a concomitant rapid increase in the electron mobility below $T sim 40$ K, leads to comparable densities of electrons and holes at low temperatures suggesting a possible electronic phase-transition around this temperature.
113 - Q. R. Zhang , D. Rhodes , B. Zeng 2016
Both Nb$_3$Pd$_x$Se$_7$ and Ta$_4$Pd$_3$Te$_{16}$ crystallize in a monoclinic point group while exhibiting superconducting transition temperatures as high as $T_csim 3.5$ and $sim 4.7 $ K, respectively. Disorder was claimed to lead to the extremely l arge upper critical fields ($H_{c2}$) observed in related compounds. Despite the presence of disorder and heavier elements, $H_{c2}$s in Ta$_4$Pd$_3$Te$_{16}$ are found to be considerably smaller than those of Nb$_3$Pd$_x$Se$_7$ while displaying an anomalous, non-saturating linear dependence on temperature $T$ for fields along all three crystallographic axes. In contrast, crystals of the latter compound displaying the highest $T_c$s display $H_{c2}propto (1-T/T_c)^{1/2}$, which in monolayers of transition metal dichalcogenides is claimed to be evidence for an Ising paired superconducting state resulting from strong spin-orbit coupling. This anomalous $T$-dependence indicates that the superconducting state of Nb$_3$Pd$_x$Se$_7$ is quasi-two-dimensional in nature. This is further supported by a nearly divergent anisotropy in upper-critical fields, i.e. $gamma= H_{c2}^{b}/H_{c2}^{a^{prime}}$, upon approaching $T_c$. Hence, in Nb$_3$Pd$_x$Se$_7$ the increase of $T_c$ correlates with a marked reduction in electronic dimensionality as observed, for example, in intercalated FeSe. For the Nb compound, Density functional theory (DFT) calculations indicate that an increase in the external field produces an anisotropic orbital response, with especially strong polarization at the Pd sites when the field is perpendicular to their square planar environment. Therefore, DFT suggests the field-induced pinning of the spin to the lattice as a possible mechanism for decoupling the superconducting planes. Overall, our observations represent further evidence for unconventional superconductivity in the Pd chalcogenides.
224 - B. Zeng , Q. R. Zhang , D. Rhodes 2014
Here, we unveil evidence for a quantum phase-transition in CeCu_2Ge_2 which displays both an incommensurate spin-density wave (SDW) ground-state, and a strong renormalization of the quasiparticle effective masses (mu) due to the Kondo-effect. For all angles theta between an external magnetic field (H) and the crystallographic c-axis, the application of H leads to the suppression of the SDW-state through a 2^nd-order phase-transition at a theta-dependent critical-field H_p(theta) leading to the observation of small Fermi surfaces (FSs) in the paramagnetic (PM) state. For H || c-axis, these FSs are characterized by light mus pointing also to the suppression of the Kondo-effect at H_p with surprisingly, no experimental evidence for quantum-criticality (QC). But as $H$ is rotated towards the a-axis, these mus increase considerably becoming undetectable for theta > 56^0 between H and the c-axis. Around H_p^a~ 30 T the resistivity becomes proportional T which, coupled to the divergence of mu, indicates the existence of a field-induced QC-point at H_p^a(T=0 K). This observation, suggesting FS hot-spots associated with the SDW nesting-vector, is at odds with current QC scenarios for which the continuous suppression of all relevant energy scales at H_p(theta,T) should lead to a line of quantum-critical points in the H-theta plane. Finally, we show that the complexity of its magnetic phase-diagram(s) makes CeCu_2Ge_2 an ideal system to explore field-induced quantum tricritical and QC end-points.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا