ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural phase transitions described by Mexican hat potentials should in principle exhibit aspects of Higgs and Goldstone physics. Here, we investigate the relationship between the phonons that soften at such structural phase transitions and the Hi ggs- and Goldstone-boson analogues associated with the crystallographic Mexican hat potential. We show that, with the exception of systems containing only one atom type, the usual Higgs and Goldstone modes are represented by a combination of several phonon modes, with the lowest energy phonons of the relevant symmetry having substantial contribution. Taking the hexagonal manganites as a model system, we identify these modes using Landau theory, and predict the temperature dependence of their frequencies using parameters obtained from density functional theory. Separately, we calculate the additional temperature dependence of all phonon mode frequencies arising from thermal expansion within the quasi-harmonic approximation. We predict that Higgs-mode softening will dominate the low-frequency vibrational spectrum of InMnO$_3$ between zero kelvin and room-temperature, whereas the behavior of ErMnO$_3$ will be dominated by lattice expansion effects. We present temperature-dependent Raman scattering data that support our predictions, in particular confirming the existence of the Higgs mode in InMnO$_3$.
We show, by solving Maxwells equations, that an electric charge on the surface of a slab of a linear magnetoelectric material generates an image magnetic monopole below the surface provided that the magnetoelectric has a diagonal component in its mag netoelectric response. The image monopole, in turn, generates an ideal monopolar magnetic field outside of the slab. Using realistic values of the electric- and magnetic- field susceptibilties, we calculate the magnitude of the effect for the prototypical magnetoelectric material Cr$_2$O$_3$. We use low energy muon spin rotation to measure the strength of the magnetic field generated by charged muons as a function of their distance from the surface of a Cr$_2$O$_3$ films, and show that the results are consistent with the existence of the monopole. We discuss other possible routes to detecting the monopolar field, and show that, while the predicted monopolar field generated by Cr$_2$O$_3$ is above the detection limit for standard magnetic force microscopy, detection of the field using this technique is prevented by surface charging effects.
The spontaneous transformations associated with symmetry-breaking phase transitions generate domain structures and defects that may be topological in nature. The formation of these defects can be described according to the Kibble-Zurek mechanism, whi ch provides a generic relation that applies from cosmological to interatomic lengthscales. Its verification is challenging, however, in particular at the cosmological scale where experiments are impractical. While it has been demonstrated for selected condensed-matter systems, major questions remain regarding e.g. its degree of universality. Here we develop a global Kibble-Zurek picture from the condensed-matter level. We show theoretically that a transition between two fluctuation regimes (Ginzburg and mean-field) can lead to an intermediate region with reversed scaling, and we verify experimentally this behavior for the structural transition in the series of multiferroic hexagonal manganites. Trends across the series allow us to identify additional intrinsic features of the defect formation beyond the original Kibble-Zurek paradigm.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا