ترغب بنشر مسار تعليمي؟ اضغط هنا

Deadlocks occur in concurrent programs as a consequence of cyclic resource acquisition between threads. In this paper we present a novel type system that guarantees deadlock freedom for a language with references, unstructured locking primitives, and locks which are implicitly associated with references. The proposed type system does not impose a strict lock acquisition order and thus increases programming language expressiveness.
A challenge for programming language research is to design and implement multi-threaded low-level languages providing static guarantees for memory safety and freedom from data races. Towards this goal, we present a concurrent language employing safe region-based memory management and hierarchical locking of regions. Both regions and locks are treated uniformly, and the language supports ownership transfer, early deallocation of regions and early release of locks in a safe manner.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا