ترغب بنشر مسار تعليمي؟ اضغط هنا

98 - Tal Alexander 2014
Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiations push balances gravitys pull. However, even exponential growth at the Eddington-limited e-folding time t_E ~ few x 0.01 billion years, is too slow to grow s tellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is trapped in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BHs random motions suppress the formation of a slowly-draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang.
Cluster gravitational lensing surveys like the Hubble Space Telescope Frontier Fields survey will detect distant galaxies 10-50 times fainter than any yet discovered. Using these surveys to measure the luminosity function of such faint, distant galax ies, however, requires that magnification maps built from the constraints of strongly-lensed images be accurate. For models that assume the cluster and nearby (correlated) structures are the only significant sources of lensing, a potential source of error in these maps comes from the fact that light rays also suffer weak deflections by uncorrelated large-scale structure along the line-of-sight, i.e. cosmic weak lensing (CWL). To demonstrate the magnitude of this effect, we calculate the magnification change which results when the same cluster-lens is placed along different lines of sight. Using a simple density profile for a cluster-lens at z~0.3-0.5 and the power spectrum of the matter density fluctuations responsible for CWL, we show that the typical magnifications of ~5(10) of sources at z=6-10 can differ by ~10-20(20-30)% from one line-of-sight to another. However, these fluctuations rise to greater than order unity near critical curves, indicating that CWL tends to make its greatest contribution to the most magnified images. We conclude that the neglect of CWL in determining the intrinsic luminosities of highly-magnified galaxies may introduce errors significant enough to warrant further effort to include this contribution in cluster-lens modeling. We suggest that methods of modeling CWL in galaxy-strong-lensing systems should be generalized to cluster-lensing systems.
In a recently published article, we quantified the impact of primordial non-Gaussianity on the probability of giant-arc formation. In that work, we focused on the local form of non-Gaussianity and found that it can have only a modest effect given the most recent constraints from Cosmic Microwave Background (CMB) measurements. Here, we present new calculations using a parameterization of scale-dependent non-Gaussianity in which the primordial bispectrum has the equilateral shape and the effective f_NL parameter depends on scale. We find that non-Gaussianity of this type can yield a larger effect on the giant-arc abundance compared to the local form due to both the scale dependence and the relatively weaker constraints on the equilateral shape from CMB measurements. In contrast to the maximum ~40% effect (within the latest CMB constraints) previously found for the local form, we find that the predicted giant-arc abundance for the scale-dependent equilateral form can differ by a factor of a few with respect to the Gaussian case.
For over a decade, it has been debated whether the concordance LCDM model is consistent with the observed abundance of giant arcs in clusters. While previous theoretical studies have focused on properties of the lens and source populations, as well a s cosmological effects such as dark energy, the impact of initial conditions on the giant-arc abundance is relatively unexplored. Here, we quantify the impact of non-Gaussian initial conditions with the local bispectrum shape on the predicted frequency of giant arcs. Using a path-integral formulation of the excursion set formalism, we extend a semi-analytic model for calculating halo concentrations to the case of primordial non-Gaussianity, which may be useful for applications outside of this work. We find that massive halos tend to collapse earlier in models with positive f_NL, relative to the Gaussian case, leading to enhanced concentration parameters. The converse is true for f_NL < 0. In addition to these effects, which change the lensing cross sections, non-Gaussianity also modifies the abundance of supercritical clusters available for lensing. These combined effects work together to either enhance (f_NL > 0) or suppress (f_NL < 0) the probability of giant-arc formation. Using the best value and 95% confidence levels currently available from the Wilkinson Microwave Anisotropy Probe, we find that the giant-arc optical depth for sources at z_s~2 is enhanced by ~20% and ~45% for f_NL = 32 and 74 respectively. In contrast, we calculate a suppression of ~5% for f_NL = -10. These differences translate to similar relative changes in the predicted all-sky number of giant arcs.
Weak gravitational lensing provides a potentially powerful method for the detection of clusters. In addition to cluster candidates, a large number of objects with possibly no optical or X-ray component have been detected in shear-selected samples. We develop an analytic model to investigate the claim of Weinberg & Kamionkowski (2002) that unvirialised protoclusters account for a significant number of these so-called dark lenses. In our model, a protocluster consists of a small virialised region surrounded by in-falling matter. We find that, in order for a protocluster to simultaneously escape X-ray detection and create a detectable weak lensing signal, it must have a small virial mass (~10^{13} Msun) and large total mass (~ 10^{15} Msun), with a relatively flat density profile outside of the virial radius. Such objects would be characterized by rising tangential shear profiles well beyond the virial radius. We use a semi-analytic approach based on the excursion set formalism to estimate the abundance of lensing protoclusters with a low probability of X-ray detection. We find that they are extremely rare, accounting for less than 0.4 per cent of the total lenses in a survey with background galaxy density n = 30 arcmin^{-2} and an intrinsic ellipticity dispersion of 0.3. We conclude that lensing protoclusters with undetectable X-Ray luminosities are too rare to account for a significant number of dark lenses.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا