ترغب بنشر مسار تعليمي؟ اضغط هنا

The wide use of XML for document management and data exchange has created the need to query large repositories of XML data. To efficiently query such large data collections and take advantage of parallelism, we have implemented Apache VXQuery, an ope n-source scalable XQuery processor. The system builds upon two other open-source frameworks -- Hyracks, a parallel execution engine, and Algebricks, a language agnostic compiler toolbox. Apache VXQuery extends these two frameworks and provides an implementation of the XQuery specifics (data model, data-model dependent functions and optimizations, and a parser). We describe the architecture of Apache VXQuery, its integration with Hyracks and Algebricks, and the XQuery optimization rules applied to the query plan to improve path expression efficiency and to enable query parallelism. An experimental evaluation using a real 500GB dataset with various selection, aggregation and join XML queries shows that Apache VXQuery performs well both in terms of scale-up and speed-up. Our experiments show that it is about 3x faster than Saxon (an open-source and commercial XQuery processor) on a 4-core, single node implementation, and around 2.5x faster than Apache MRQL (a MapReduce-based parallel query processor) on an eight (4-core) node cluster.
The electronic structure of NdVO3, YVO3 has been investigated as a function of sample temperature using resonant inelastic soft x-ray scattering at the V L3-edge. Most of the observed spectral features are in good agreement with an atomic crystal-fie ld multiplet model. However, a low energy feature is observed at ~0.4 eV that cannot be explained by crystal-field arguments. The resonant behaviour of this feature establishes it as due to excitations of the V t2g states. Moreover, this feature exhibits a strong sample temperature dependence, reaching maximum intensity in the orbitally-ordered phase of NdVO3, before becoming suppressed at low temperatures. This behaviour indicates that the origin of this feature is a collective orbital excitation, i.e. the bi-orbiton.
We report the discovery of nine metal-poor stars with high levels of r-process enhancement (+0.81<[Eu/Fe]<+1.13), including six subgiants and three stars on the red horizontal branch. We also analyze four previously-known r-process-enhanced metal-poo r red giants. From this sample of 13 stars, we draw the following conclusions. (1) High levels of r-process enhancement are found in a broad range of stellar evolutionary states, reaffirming that this phenomenon is not associated with a chemical peculiarity of red giant atmospheres. (2) Only 1 of 10 stars observed at multiple epochs shows radial velocity variations, reaffirming that stars with high levels of r-process enhancement are not preferentially found among binaries. (3) Only 2 of the 13 stars are highly-enhanced in C and N, indicating that there is no connection between high levels of r-process enhancement and high levels of C and N. (4) The dispersions in [Sr/Ba] and [Sr/Eu] are larger than the dispersions in [Ba/Eu] and [Yb/Eu], suggesting that the elements below the second r-process peak do not always scale with those in the rare earth domain, even within the class of highly-r-process-enhanced stars. (5) The light-element (12<Z<30) abundances of highly-r-process-enhanced stars are indistinguishable from those with normal levels of r-process material at the limit of our data, 3.5 per cent (0.015 dex) on average. The nucleosynthetic sites responsible for the large r-process enhancements did not produce any detectable light-element abundance signatures distinct from normal core-collapse supernovae.
Elastic scattering of photons from 12C has been investigated using quasi-monoenergetic tagged photons with energies in the range 65 - 115 MeV at laboratory angles of 60 deg, 120 deg, and 150 deg at the Tagged-Photon Facility at the MAX IV Laboratory in Lund, Sweden. A phenomenological model was employed to provide an estimate of the sensitivity of the 12C(g,g)12C cross section to the bound-nucleon polarizabilities.
Rate-dependent effects in the electronics used to instrument the tagger focal plane at the MAX IV Laboratory were recently investigated using the novel approach of Monte Carlo simulation to allow for normalization of high-rate experimental data acqui red with single-hit time-to-digital converters (TDCs). The instrumentation of the tagger focal plane has now been expanded to include multi-hit TDCs. The agreement between results obtained from data taken using single-hit and multi-hit TDCs demonstrate a thorough understanding of the behavior of the detector system.
43 - S. Recchi 2013
The aim of this paper is to quantify the amplitude of the predicted plateau in [alpha/Fe] ratios associated with the most metal-poor stars of a galaxy. We assume that the initial mass function in galaxies is steeper if the star formation rate (SFR) i s low -- as per the integrated galactic initial mass function (IGIMF) theory. A variant of the theory, in which the IGIMF depends upon the metallicity of the parent galaxy, is also considered. The IGIMF theory predicts low [alpha/Fe] plateaus in dwarf galaxies, characterised by small SFRs. The [alpha/Fe] plateau is up to 0.7dex lower than the corresponding plateau of the Milky Way. For a universal IMF one should expect instead that the [alpha/Fe] plateau is the same for all the galaxies, irrespective of their masses or SFRs. Assuming a strong dependence of the IMF on the metallicity of the parent galaxy, dwarf galaxies can show values of the [alpha/Fe] plateau similar to those of the Milky Way, and almost independent on the SFR. The [Mg/Fe] ratios of the most metal-poor stars in dwarf galaxies satellites of the Milky Way can be reproduced either if we consider metallicity-dependent IMFs or if the early SFRs of these galaxies were larger than we presently think. Present and future observations of dwarf galaxies can help disentangle between these different IGIMF formulations.
The electronic structure of the kagome staircase compounds, Ni3V2O8 and Co3V2O8, has been investigated using soft x-ray absorption, soft x-ray emission, and resonant inelastic x-ray scattering (RIXS). Comparison between the two compounds, and with fi rst principles band structure calculations and crystal-field multiplet models, provide unique insight into the electronic structure of the two materials. Whereas the location of the narrow (Ni,Co) d bands is predicted to be close to EF, we experimentally find they lie deeper in the occupied O 2p and unoccupied V 3d manifolds, and determine their energy via measured charge-transfer excitations. Additionally, we find evidence for a dd excitation at 1.5 eV in Ni3V2O8, suggesting the V d states may be weakly occupied in this compound, contrary to Co3V2O8. Good agreement is found between the crystal-field dd excitations observed in the experiment and predicted by atomic multiplet theory.
Many modern statistical applications involve inference for complicated stochastic models for which the likelihood function is difficult or even impossible to calculate, and hence conventional likelihood-based inferential echniques cannot be used. In such settings, Bayesian inference can be performed using Approximate Bayesian Computation (ABC). However, in spite of many recent developments to ABC methodology, in many applications the computational cost of ABC necessitates the choice of summary statistics and tolerances that can potentially severely bias the estimate of the posterior. We propose a new piecewise ABC approach suitable for discretely observed Markov models that involves writing the posterior density of the parameters as a product of factors, each a function of only a subset of the data, and then using ABC within each factor. The approach has the advantage of side-stepping the need to choose a summary statistic and it enables a stringent tolerance to be set, making the posterior less approximate. We investigate two methods for estimating the posterior density based on ABC samples for each of the factors: the first is to use a Gaussian approximation for each factor, and the second is to use a kernel density estimate. Both methods have their merits. The Gaussian approximation is simple, fast, and probably adequate for many applications. On the other hand, using instead a kernel density estimate has the benefit of consistently estimating the true ABC posterior as the number of ABC samples tends to infinity. We illustrate the piecewise ABC approach for three examples; in each case, the approach enables exact matching between simulations and data and offers fast and accurate inference.
We present a spectroscopic study that reveals that the metal-insulator transition of strained VO$_2$ thin films may be driven towards a purely electronic transition, which does not rely on the Peierls dimerization, by the application of mechanical st rain. Comparison with a moderately strained system, which does involve the lattice, demonstrates the crossover from Peierls- to Mott-like transitions.
Soft x-ray spectroscopy is used to investigate the strain dependence of the metal-insulator transition of VO2. Changes in the strength of the V 3d - O 2p hybridization are observed across the transition, and are linked to the structural distortion. F urthermore, although the V-V dimerization is well-described by dynamical mean-field theory, the V-O hybridization is found to have an unexpectedly strong dependence on strain that is not predicted by band theory, emphasizing the relevance of the O ion to the physics of VO2.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا