ترغب بنشر مسار تعليمي؟ اضغط هنا

Unlike conventional zero-shot classification, zero-shot semantic segmentation predicts a class label at the pixel level instead of the image level. When solving zero-shot semantic segmentation problems, the need for pixel-level prediction with surrou nding context motivates us to incorporate spatial information using positional encoding. We improve standard positional encoding by introducing the concept of Relative Positional Encoding, which integrates spatial information at the feature level and can handle arbitrary image sizes. Furthermore, while self-training is widely used in zero-shot semantic segmentation to generate pseudo-labels, we propose a new knowledge-distillation-inspired self-training strategy, namely Annealed Self-Training, which can automatically assign different importance to pseudo-labels to improve performance. We systematically study the proposed Relative Positional Encoding and Annealed Self-Training in a comprehensive experimental evaluation, and our empirical results confirm the effectiveness of our method on three benchmark datasets.
In biomedical literature, it is common for entity boundaries to not align with word boundaries. Therefore, effective identification of entity spans requires approaches capable of considering tokens that are smaller than words. We introduce a novel, s ubword approach for named entity recognition (NER) that uses byte-pair encodings (BPE) in combination with convolutional and recurrent neural networks to produce byte-level tags of entities. We present experimental results on several standard biomedical datasets, namely the BioCreative VI Bio-ID, JNLPBA, and GENETAG datasets. We demonstrate competitive performance while bypassing the specialized domain expertise needed to create biomedical text tokenization rules.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا