ترغب بنشر مسار تعليمي؟ اضغط هنا

We have searched nearly 40,000 inorganic solids in the Inorganic Crystal Structural Database to identify compounds containing a transition metal or rare earth kagome sublattice, a geometrically magnetically frustrated lattice, ultimately identifying $sim$500 materials. A broad analysis of the chemical and structural trends of these materials shows three types of kagome sheet stacking and several classes of magnetic complexity. Following the search and classification, we rapidly screen the magnetic properties of a subset of the materials using density functional theory to eliminate those that are unlikely to exhibit magnetic frustration. From the results of our computational screening, we rediscover six materials that have previously been explored for their low temperature magnetic behavior, albeit showing symmetry breaking distortions, spin glass behavior, or magnetic ordering. However, all are materials with antiferromagnetic behavior, which we correctly predict. Finally, we also report three materials that appear to be unexplored for their magnetic properties.
To be practical, semiconductors need to be doped. Sometimes, to nearly degenerate levels, e.g. in applications such as thermoelectric, transparent electronics or power electronics. However, many materials with finite band gaps are not dopable at all, while many others exhibit strong preference toward allowing either p- or n-type doping, but not both. In this work, we develop a model description of semiconductor dopability and formulate design principles in terms of governing materials properties. Our approach, which builds upon the semiconductor defect theory applied to a suitably devised (tight-binding) model system, reveals analytic relationships between intrinsic materials properties and the semiconductor dopability, and elucidates the role and the insufficiency of previously suggested descriptors such as the absolute band edge positions. We validate our model against a number of classic binary semiconductors and discuss its extension to more complex chemistries and the utility in large-scale material searches.
The recent discovery of high thermoelectric performance in Mg$_3$Sb$_2$ has been critically enabled by the success in $n$-type doping of this material, which is achieved under Mg-rich growth conditions, typically with chalcogens (Se, Te) as extrinsic dopants. Using first-principles defect calculations, we previously predicted that higher electron concentrations ($sim10^{20}$ cm$^{-3}$) can be achieved in Mg$_3$Sb$_2$ by doping with La instead of Se or Te. Subsequent experiments showed that free electron concentration in La-doped Mg$_3$Sb$_{2-x}$Bi$_x$ indeed exceeds those in the Te-doped material. Herein, we further investigate $n$-type doping of Mg$_3$Sb$_2$ and predict that, in addition to La, other group-3 elements (Sc, Y) are also effective as $n$-type dopants; Y is as good as La while Sc slightly less. Overall, we find that doping with any group-3 elements should lead to higher free electron concentrations than doping with chalcogens.
In this work, we expand the set of known layered compounds to include ionic layered materials, which are well known for superconducting, thermoelectric, and battery applications. Focusing on known ternary compounds from the ICSD, we screen for ionic layered structures by expanding upon our previously developed algorithm for identification of van der Waals (vdW) layered structures, thus identifying over 1,500 ionic layered compounds. Since vdW layered structures can be chemically mutated to form ionic layered structures, we have developed a methodology to structurally link binary vdW to ternary ionic layered materials. We perform an in-depth analysis of similarities and differences between these two classes of layered systems and assess the interplay between layer geometry and bond strength with a study of the elastic anisotropy. We observe a rich variety of anisotropic behavior in which the layering direction alone is not a simple predictor of elastic anisotropy. Our results enable discovery of new layered materials through intercalation or de- intercalation of vdW or ionic layered systems, respectively, as well as lay the groundwork for studies of anisotropic transport phenomena such as sound propagation or lattice thermal conductivity.
The bulk piezoelectric response, as measured by the piezoelectric modulus tensor (textbf{d}), is determined by a combination of charge redistribution due to strain and the amount of strain produced by the application of stress (stiffness). Motivated by the notion that less stiff materials could exhibit large piezoelectric responses, herein we investigate the piezoelectric modulus of van der Waals-bonded quasi-2D ionic compounds using first-principles calculations. From a pool of 869 known binary and ternary quasi-2D materials, we have identified 135 non-centrosymmetric crystals of which 48 systems are found to have textbf{d} components larger than the longitudinal piezoelectric modulus of AlN (a common piezoelectric for resonators), and three systems with the response greater than that of PbTiO$_3$, which is among the materials with largest known piezoelectric modulus. None of the identified materials have previously been considered for piezoelectric applications. Furthermore, we find that large textbf{d} components always couple to the deformations (shearing or axial) of van der Waals gaps between the layers and are indeed enabled by the weak intra-layer interactions.
Since AlN has emerged as an important piezoelectric material for a wide variety of applications, efforts have been made to increase its piezoelectric response via alloying with transition metals that can substitute for Al in the wurtzite lattice. Her ein, we report density functional theory calculations of structure and properties of the Cr-AlN system for Cr concentrations ranging past the wurtzite-rocksalt transition point. By studying the different contributions to the longitudinal piezoelectric coefficient, we propose that the physical origin of the enhanced piezoelectricity in Cr$_x$Al$_{1-x}$N alloys is the increase of the internal parameter $u$ of the wurtzite structure upon substitution of Al with the larger Cr ions. Among a set of wurtzite-structured materials, we have found that Cr-AlN has the most sensitive piezoelectric coefficient with respect to alloying concentration. Based on these results, we propose that Cr-AlN is a viable piezoelectric material whose properties can be tuned via Cr composition; we support this proposal by combinatorial synthesis experiments, which show that Cr can be incorporated in the AlN lattice up to 30% before a detectable transition to rocksalt occurs. At this Cr content, the piezoelectric modulus $d_{33}$ is approximately four times larger than that of pure AlN. This finding, combined with the relative ease of synthesis, may propel Cr-AlN as the prime piezoelectric material for applications such as resonators and acoustic wave generators.
A complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory has been developed. The framework provides an effective and efficient method for defect structure generation, and c reation of simple yet customizable workflows to analyze defect calculations. The package provides the capability to compute widely-accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In$_2$O$_3$ as test examples, we demonstrate the package capabilities and validate the methodology.
Implementation of an optically active material on silicon has been a persistent technological challenge. For tandem photovoltaics using a Si bottom cell, as well as for other optoelectronic applications, there has been a longstanding need for optical ly active, wide band gap materials that can be integrated with Si. ZnSiP$_2$ is a stable, wide band gap (2.1 eV) material that is lattice matched with silicon and comprised of inexpensive elements. As we show in this paper, it is also a defect-tolerant material. Here, we report the first ZnSiP$_2$ photovoltaic device. We show that ZnSiP$_2$ has excellent photoresponse and high open circuit voltage of 1.3 V, as measured in a photoelectrochemical configuration. The high voltage and low band gap-voltage offset are on par with much more mature wide band gap III-V materials. Photoluminescence data combined with theoretical defect calculations illuminate the defect physics underlying this high voltage, showing that the intrinsic defects in ZnSiP$_2$ are shallow and the minority carrier lifetime is 7 ns. These favorable results encourage the development of ZnSiP$_2$ and related materials as photovoltaic absorber materials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا