ترغب بنشر مسار تعليمي؟ اضغط هنا

We present magnetic stray field measurements performed on a single micro-crystal of the half metallic ferromagnet CrO$_2$, covered by a naturally grown 2,-,5,nm surface layer of antiferromagnetic (AFM) Cr$_2$O$_3$. The temperature variation of the st ray field of the micro-crystal measured by micro-Hall magnetometry shows an anomalous increase below $sim$,60,K. We find clear evidence that this behavior is due to the influence of the AFM surface layer, which could not be isolated in the corresponding bulk magnetization data measured using SQUID magnetometry. The distribution of pinning potentials, analyzed from Barkhausen jumps, exhibits a similar temperature dependence. Overall, the results indicate that the surface layer plays a role in defining the potential landscape seen by the domain configuration in the ferromagnetic grain.
Micro-Hall magnetometry is employed to study the magnetization dynamics of a single, micron-size CrO$_2$ grain. With this technique we track the motion of a single domain wall, which allows us to probe the distribution of imperfections throughout the material. An external magnetic field along the grains easy magnetization direction induces magnetization reversal, giving rise to a series of sharp jumps in magnetization. Supported by micromagnetic simulations, we identify the transition to a state with a single cross-tie domain wall, where pinning/depinning of the wall results in stochastic Barkhausen jumps.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا