ترغب بنشر مسار تعليمي؟ اضغط هنا

Many-body localization (MBL) is an example of a dynamical phase of matter that avoids thermalization. While the MBL phase is robust to weak local perturbations, the fate of an MBL system coupled to a thermalizing quantum system that represents a heat bath is an open question that is actively investigated theoretically and experimentally. In this work we consider the stability of an Anderson insulator with a finite density of particles interacting with a single mobile impurity -- a small quantum bath. We give perturbative arguments that support the stability of localization in the strong interaction regime. Large scale tensor network simulations of dynamics are employed to corroborate the presence of the localized phase and give quantitative predictions in the thermodynamic limit. We develop a phenomenological description of the dynamics in the strong interaction regime, and demonstrate that the impurity effectively turns the Anderson insulator into an MBL phase, giving rise to non-trivial entanglement dynamics well captured by our phenomenology.
Recent scanning tunnelling microscopy experiments in NbN thin disordered superconducting films found an emergent inhomogeneity at the scale of tens of nanometers. This inhomogeneity is mirrored by an apparent dimensional crossover in the paraconducti vity measured in transport above the superconducting critical temperature $T_c$. This behavior was interpreted in terms of an anomalous diffusion of fluctuating Cooper pairs, that display a {em quasi-confinement} (i.e., a slowing down of their diffusive dynamics) on length scales shorter than the inhomogeneity identified by tunnelling experiments. Here we assume this anomalous diffusive behavior of fluctuating Cooper pairs and calculate the effect of these fluctuations on the electron density of states above $T_c$. We find that the density of states is substantially suppressed up to temperatures well above $T_c$. This behavior, which is closely reminiscent of a pseudogap, only arises from the anomalous diffusion of fluctuating Cooper pairs in the absence of stable preformed pairs, setting the stage for an intermediate behavior between the two common paradigms in the superconducting-insulator transition, namely the localisation of Cooper pairs (the so-called bosonic scenario) and the breaking of Cooper pairs into unpaired electrons due to strong disorder (the so-called fermionic scenario).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا