ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent solar flare observations in the sub-THz range have provided evidence of a new spectral component with fluxes increasing for larger frequencies, separated from the well-known microwave emission that maximizes in the GHz range. Suggested interpr etations explain the THz spectral component, but do not account for the simultaneous microwave component. We present a mechanism for producing the observed double-spectra. Based on coherent enhancement of synchrotron emission at long wavelengths in laboratory accelerators, we consider how similar processes may occur within a solar flare. The instability known as microbunching arises from perturbations that produce electron beam density modulations, giving rise to broadband coherent synchrotron emission at wavelengths comparable to the characteristic size of the microbunch structure. The spectral intensity of this coherent synchrotron radiation (CSR) can far exceed that of the incoherent synchrotron radiation (ISR), which peaks at higher frequency, thus producing a double-peaked spectrum. Successful CSR simulations are shown to fit actual burst spectral observations, using typical flaring physical parameters and power-law energy distributions for the accelerated electrons. The simulations consider an energy threshold below which microbunching is not possible because of Coulomb repulsion. Only a small fraction of the radiating charges accelerated to energies above the threshold is required to produce the microwave component observed for several events. The ISR-CSR mechanism can occur together with other emission processes producing the microwave component. It may bring an important contribution at microwaves at least for certain events where physical conditions for the occurrence of the ISR-CSR microbunching mechanism are possible.
Solar observations at sub-THz frequencies detected a new flare spectral component peaking in the THz range, simultaneously with the well known microwaves component, bringing challenging constraints for interpretation. Higher THz frequencies observati ons are needed to understand the nature of the mechanisms occurring in flares. A THz photometer system was developed to observe outside the terrestrial atmosphere on stratospheric balloons or satellites, or at exceptionally transparent ground stations. The telescope was designed to observe the whole solar disk detecting small relative changes in input temperature caused by flares at localized positions. A Golay cell detector is preceded by low-pass filters to suppress visible and near IR radiation, a band-pass filter, and a chopper. A prototype was assembled to demonstrate the new concept and the system performance. It can detect temperature variations smaller than 1 K for data sampled at a rate of 10/second, smoothed for intervals larger than 4 seconds. For a 76 mm aperture, this corresponds to small solar burst intensities at THz frequencies. A system with 3 and 7 THz photometers is being built for solar flare observations on board of stratospheric balloon missions.
Radio and optical observations of the evolution of flare-associated phenomena have shown an initial and rapid burst at 0.4 THz only followed subsequently by a localized chromospheric heating producing an H{alpha} brightening with later heating of the whole active region. A major instability occurred several minutes later producing one impulsive burst at microwaves only, associated with an M2.0 GOES X-ray flare that exhibited the main H{alpha} brightening at the same site as the first flash. The possible association between long-enduring time profiles at soft X-rays, microwaves, H{alpha} and sub-THz wavelengths is discussed. In the decay phase the H{alpha} movie shows a disrupting magnetic arch structure ejecting dark, presumably chromospheric, material upwards. The time sequence of events suggests genuine interdependent and possibly non-thermal instabilities triggering phenomena, with concurrent active region plasma heating and material ejection.
Solar observations in the mid-infrared 8-14 mum band continuum were carried out with cadence of 5 frames per second, in December 2007. Rapid small heated sources, with typical duration of the order of seconds, were found on the bright plage-like area s around sunspots, in association with relatively weak GOES soft X-ray bursts. This work presents the analysis of fast mid-infrared flashes detected during a GOES B2.0-class event on 10 December 2007, beginning at about 10:40 UT. Rapid brightness temperature enhancements of 0.5 to 2.0 K were detected at the Earth by a microbolometer array, using a telescope with 10.5 cm diameter aperture producing a diffraction limited field-of-view of 25 arcsec. Minimum detectable temperature change was of 0.1 K. The corresponding fluxes are 30-130 solar flux units. At the solar surface the estimated rapid brightenings were of 50-150 K
A new solar burst emission spectral component has been found showing sub-THz fluxes increasing with frequency, spectrally separated from the well known microwave component. Rapid pulsations are found present in all events observed at the two frequenc ies of the solar submillimeter-wave telescope (SST): 212 and 405 GHz. They were studied in greater detail for three solar bursts exhibiting the new THz spectral component. The pulse amplitudes are of about 5-8% of the mean flux throughout the bursts durations, being comparable for both frequencies. Pulsations range from one pulse every few seconds to 8-10 per second. The pulse repetition rates (R) are linearly proportional to the mean burst fluxes (S), following the simple relationship S = k R, suggesting that the pulsations might be the response to discrete flare particle accelerator injections quantized in energy. Although this result is consistent with qualitative trends previously found in the GHz range, the pulse amplitude relative to the mean fluxes at the sub-THz frequencies appear to be nearly ten times smaller than expected from the extrapolation of the trends found in the GHz range. However there are difficulties to reconcile the nearly simultaneous GHz and THz burst emission spectrally separated components, exhibiting rapid pulsations with considerably larger relative intensities in the GHz range.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا