ترغب بنشر مسار تعليمي؟ اضغط هنا

78 - Pierre Geneves 2014
This thesis describes the theoretical and practical foundations of a system for the static analysis of XML processing languages. The system relies on a fixpoint temporal logic with converse, derived from the mu-calculus, where models are finite trees . This calculus is expressive enough to capture regular tree types along with multi-directional navigation in trees, while having a single exponential time complexity. Specifically the decidability of the logic is proved in time 2^O(n) where n is the size of the input formula. Major XML concepts are linearly translated into the logic: XPath navigation and node selection semantics, and regular tree languages (which include DTDs and XML Schemas). Based on these embeddings, several problems of major importance in XML applications are reduced to satisfiability of the logic. These problems include XPath containment, emptiness, equivalence, overlap, coverage, in the presence or absence of regular tree type constraints, and the static type-checking of an annotated query. The focus is then given to a sound and complete algorithm for deciding the logic, along with a detailed complexity analysis, and crucial implementation techniques for building an effective solver. Practical experiments using a full implementation of the system are presented. The system appears to be efficient in practice for several realistic scenarios. The main application of this work is a new class of static analyzers for programming languages using both XPath expressions and XML type annotations (input and output). Such analyzers allow to ensure at compile-time valuable properties such as type-safety and optimizations, for safer and more efficient XML processing.
225 - Everardo Barcenas 2010
Regular tree grammars and regular path expressions constitute core constructs widely used in programming languages and type systems. Nevertheless, there has been little research so far on frameworks for reasoning about path expressions where node car dinality constraints occur along a path in a tree. We present a logic capable of expressing deep counting along paths which may include arbitrary recursive forward and backward navigation. The counting extensions can be seen as a generalization of graded modalities that count immediate successor nodes. While the combination of graded modalities, nominals, and inverse modalities yields undecidable logics over graphs, we show that these features can be combined in a decidable tree logic whose main features can be decided in exponential time. Our logic being closed under negation, it may be used to decide typical problems on XPath queries such as satisfiability, type checking with relation to regular types, containment, or equivalence.
Regular tree grammars and regular path expressions constitute core constructs widely used in programming languages and type systems. Nevertheless, there has been little research so far on reasoning frameworks for path expressions where node cardinali ty constraints occur along a path in a tree. We present a logic capable of expressing deep counting along paths which may include arbitrary recursive forward and backward navigation. The counting extensions can be seen as a generalization of graded modalities that count immediate successor nodes. While the combination of graded modalities, nominals, and inverse modalities yields undecidable logics over graphs, we show that these features can be combined in a tree logic decidable in exponential time.
This document describes how to use the XML static analyzer in practice. It provides informal documentation for using the XML reasoning solver implementation. The solver allows automated verification of properties that are expressed as logical formula s over trees. A logical formula may for instance express structural constraints or navigation properties (like e.g. path existence and node selection) in finite trees. Logical formulas can be expressed using the syntax of XPath expressions, DTD, XML Schemas, and Relax NG definitions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا