ترغب بنشر مسار تعليمي؟ اضغط هنا

We prove the nonlinear local stability of Dirac masses for a kinetic model of alignment of particles on the unit sphere, each point of the unit sphere representing a direction. A population concentrated in a Dirac mass then corresponds to the global alignment of all individuals. The main difficulty of this model is the lack of conserved quantities and the absence of an energy that would decrease for any initial condition. We overcome this difficulty thanks to a functional which is decreasing in time in a neighborhood of any Dirac mass (in the sense of the Wasserstein distance). The results are then extended to the case where the unit sphere is replaced by a general Riemannian manifold.
We provide a complete and rigorous description of phase transitions for kinetic models of self-propelled particles interacting through alignment. These models exhibit a competition between alignment and noise. Both the alignment frequency and noise i ntensity depend on a measure of the local alignment. We show that, in the spatially homogeneous case, the phase transition features (number and nature of equilibria, stability, convergence rate, phase diagram, hysteresis) are totally encoded in how the ratio between the alignment and noise intensities depend on the local alignment. In the spatially inhomogeneous case, we derive the macroscopic models associated to the stable equilibria and classify their hyperbolicity according to the same function.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا