ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyze time series stemming from experiments and direct numerical simulations of hydrodynamic and magnetohydrodynamic turbulence. Simulations are done in periodic boxes, but with a volumetric forcing chosen to mimic the geometry of the flow in th e experiments, the von Karman swirling flow between two counter-rotating impellers. Parameters in the simulations are chosen to (within computational limitations) allow comparisons between the experiments and the numerical results. Conducting fluids are considered in all cases. Two different configurations are considered: a case with a weak externally imposed magnetic field, and a case with self-sustained magnetic fields. Evidence of long-term memory and $1/f$ noise is observed in experiments and simulations, in the case with weak magnetic field associated with the hydrodynamic behavior of the shear layer in the von Karman flow, and in the dynamo case associated with slow magnetohydrodynamic behavior of the large scale magnetic field.
We present experimental measurements of a wall-bounded gravity current, motivated by characterizing natural gravity currents such as oceanic overflows. We use particle image velocimetry and planar laser-induced fluorescence to simultaneously measure the velocity and density fields as they evolve downstream of the initial injection from a turbulent channel flow onto a plane inclined at 10$^circ$ with respect to horizontal. The turbulence level of the input flow is controlled by injecting velocity fluctuations upstream of the output nozzle. The initial Reynolds number based on Taylor microscale of the flow, R$_lambda$, is varied between 40 and 120, and the effects of the initial turbulence level are assessed. The bulk Richardson number $Ri$ for the flow is about 0.3 whereas the gradient Richardson number $Ri_g$ varies between 0.04 and 0.25, indicating that shear dominates the stabilizing effect of stratification. Kelvin-Helmholtz instability results in vigorous vertical transport of mass and momentum. We present baseline characterization of standard turbulence quantities and calculate, in several different ways, the fluid entrainment coefficient $E$, a quantity of considerable interest in mixing parameterization for ocean circulation models. We also determine properties of mixing as represented by the flux Richardson number $Ri_f$ as a function of $Ri_g$ and diapycnal mixing parameter $K_rho$ versus buoyancy Reynolds number $Re_b$. We find reasonable agreement with results from natural flows.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا