ترغب بنشر مسار تعليمي؟ اضغط هنا

As Physics did in previous centuries, there is currently a common dream of extracting generic laws of nature in economics, sociology, neuroscience, by focalising the description of phenomena to a minimal set of variables and parameters, linked togeth er by causal equations of evolution whose structure may reveal hidden principles. This requires a huge reduction of dimensionality (number of degrees of freedom) and a change in the level of description. Beyond the mere necessity of developing accurate techniques affording this reduction, there is the question of the correspondence between the initial system and the reduced one. In this paper, we offer a perspective towards a common framework for discussing and understanding multi-level systems exhibiting structures at various spatial and temporal levels. We propose a common foundation and illustrate it with examples from different fields. We also point out the difficulties in constructing such a general setting and its limitations.
We present a short survey of a novel approach, called ETH approach, to the quantum theory of events happening in isolated physical systems and to the effective time evolution of states of systems featuring events. In particular, we attempt to present a clear explanation of what is meant by an event in quantum mechanics and of the significance of this notion. We then outline a theory of direct (projective) and indirect observations or recordings of physical quantities and events. Some key ideas underlying our general theory are illustrated by studying a simple quantum-mechanical model of a mesoscopic system.
Urbanization has been the dominant demographic trend in the entire world, during the last half century. Rural to urban migration, international migration, and the re-classification or expansion of existing city boundaries have been among the major re asons for increasing urban population. The essentially fast growth of cities in the last decades urgently calls for a profound insight into the common principles stirring the structure of urban developments all over the world. We have discussed the graph representations of urban spatial structures and suggested a computationally simple technique that can be used in order to spot the relatively isolated locations and neighborhoods, to detect urban sprawl, and to illuminate the hidden community structures in complex urban textures. The approach may be implemented for the detailed expertise of any urban pattern and the associated transport networks that may include many transportation modes.
Forty-five years after the point de depart [1] of density functional theory, its applications in chemistry and the study of electronic structures keep steadily growing. However, the precise form of the energy functional in terms of the electron densi ty still eludes us -- and possibly will do so forever [2]. In what follows we examine a formulation in the same spirit with phase space variables. The validity of Hohenberg-Kohn-Levy-type theorems on phase space is recalled. We study the representability problem for reduced Wigner functions, and proceed to analyze properties of the new functional. Along the way, new results on states in the phase-space formalism of quantum mechanics are established. Natural Wigner orbital theory is developed in depth, with the final aim of constructing accurate correlation-exchange functionals on phase space. A new proof of the overbinding property of the Mueller functional is given. This exact theory supplies its home at long last to that illustrious ancestor, the Thomas-Fermi model.
We discuss some social contagion processes to describe the formation and spread of radical opinions. The dynamics of opinion spread involves local threshold processes as well as mean field effects. We calculate and observe phase transitions in the dy namical variables resulting in a rapidly increasing number of passive supporters. This strongly indicates that military solutions are inappropriate.
We consider a porous media type equation over all of $R^d$ with $d = 1$, with monotone discontinuous coefficients with linear growth and prove a probabilistic representation of its solution in terms of an associated microscopic diffusion. This equati on is motivated by some singular behaviour arising in complex self-organized critical systems. One of the main analytic ingredients of the proof, is a new result on uniqueness of distributional solutions of a linear PDE on $R^1$ with non-continuous coefficients.
We prove local existence and uniqueness for the Newton-Schroedinger equation in three dimensions. Further we show that the blow-up alternative holds true as well as the continuous dependence of the solution w.r.t. the initial data.
Models of self-organized criticality, which can be described as singular diffusions with or without (multiplicative) Wiener forcing term (as e.g. the Bak/Tang/Wiesenfeld- and Zhang-models), are analyzed. Existence and uniqueness of nonnegative strong solutions are proved. Previously numerically predicted transition to the critical state in 1-D is confirmed by a rigorous proof that this indeed happens in finite time with high probability.
We present a study of phase transitions of the Curie--Weiss Potts model at (inverse) temperature $beta$, in presence of an external field $h$. Both thermodynamic and topological aspects of these transitions are considered. For the first aspect we com plement previous results and give an explicit equation of the thermodynamic transition line in the $beta$--$h$ plane as well as the magnitude of the jump of the magnetization (for $q geqslant 3)$. The signature of the latter aspect is characterized here by the presence or not of a giant component in the clusters of a Fortuin--Kasteleyn type representation of the model. We give the equation of the Kertesz line separating (in the $beta$--$h$ plane) the two behaviours. As a result, we get that this line exhibits, as soon as $q geqslant 3$, a very interesting cusp where it separates from the thermodynamic transition line.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا