ترغب بنشر مسار تعليمي؟ اضغط هنا

We study perturbations of the self-adjoint periodic Sturm--Liouville operator [ A_0 = frac{1}{r_0}left(-frac{mathrm d}{mathrm dx} p_0 frac{mathrm d}{mathrm dx} + q_0right) ] and conclude under $L^1$-assumptions on the differences of the coefficient s that the essential spectrum and absolutely continuous spectrum remain the same. If a finite first moment condition holds for the differences of the coefficients, then at most finitely many eigenvalues appear in the spectral gaps. This observation extends a seminal result by Rofe-Beketov from the 1960s. Finally, imposing a second moment condition we show that the band edges are no eigenvalues of the perturbed operator.
The spectrum of the singular indefinite Sturm-Liouville operator $$A=text{rm sgn}(cdot)bigl(-tfrac{d^2}{dx^2}+qbigr)$$ with a real potential $qin L^1(mathbb R)$ covers the whole real line and, in addition, non-real eigenvalues may appear if the poten tial $q$ assumes negative values. A quantitative analysis of the non-real eigenvalues is a challenging problem, and so far only partial results in this direction were obtained. In this paper the bound $$|lambda|leq |q|_{L^1}^2$$ on the absolute values of the non-real eigenvalues $lambda$ of $A$ is obtained. Furthermore, separate bounds on the imaginary parts and absolute values of these eigenvalues are proved in terms of the $L^1$-norm of the negative part of $q$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا