ترغب بنشر مسار تعليمي؟ اضغط هنا

We perform uniformly sampled large-scale cosmological simulations including magnetic fields with the moving mesh code AREPO. We run two sets of MHD simulations: one including adiabatic gas physics only; the other featuring the fiducial feedback model of the Illustris simulation. In the adiabatic case, the magnetic field amplification follows the $B propto rho^{2/3}$ scaling derived from `flux-freezing arguments, with the seed field strength providing an overall normalization factor. At high baryon overdensities the amplification is enhanced by shear flows and turbulence. Feedback physics and the inclusion of radiative cooling change this picture dramatically. In haloes, gas collapses to much larger densities and the magnetic field is amplified strongly and to the same maximum intensity irrespective of the initial seed field of which any memory is lost. At lower densities a dependence on the seed field strength and orientation, which in principle can be used to constrain models of cosmic magnetogenesis, is still present. Inside the most massive haloes magnetic fields reach values of $sim 10-100,,{rm mu G}$, in agreement with galaxy cluster observations. The topology of the field is tangled and gives rise to rotation measure signals in reasonable agreement with the observations. However, the rotation measure signal declines too rapidly towards larger radii as compared to observational data.
A discontinuous Galerkin (DG) method suitable for large-scale astrophysical simulations on Cartesian meshes as well as arbitrary static and moving Voronoi meshes is presented. Most major astrophysical fluid dynamics codes use a finite volume (FV) app roach. We demonstrate that the DG technique offers distinct advantages over FV formulations on both static and moving meshes. The DG method is also easily generalized to higher than second-order accuracy without requiring the use of extended stencils to estimate derivatives (thereby making the scheme highly parallelizable). We implement the technique in the AREPO code for solving the fluid and the magnetohydrodynamic (MHD) equations. By examining various test problems, we show that our new formulation provides improved accuracy over FV approaches of the same order, and reduces post-shock oscillations and artificial diffusion of angular momentum. In addition, the DG method makes it possible to represent magnetic fields in a locally divergence-free way, improving the stability of MHD simulations and moderating global divergence errors, and is a viable alternative for solving the MHD equations on meshes where Constrained-Transport (CT) cannot be applied. We find that the DG procedure on a moving mesh is more sensitive to the choice of slope limiter than is its FV method counterpart. Therefore, future work to improve the performance of the DG scheme even further will likely involve the design of optimal slope limiters. As presently constructed, our technique offers the potential of improved accuracy in astrophysical simulations using the moving mesh AREPO code as well as those employing adaptive mesh refinement (AMR).
We present new GMRT observations of HDF 130, an inverse-Compton (IC) ghost of a giant radio source that is no longer being powered by jets. We compare the properties of HDF 130 with the new and important constraint of the upper limit of the radio flu x density at 240 MHz to an analytic model. We learn what values of physical parameters in the model for the dynamics and evolution of the radio luminosity and X-ray luminosity (due to IC scattering of the cosmic microwave background (CMB)) of a Fanaroff-Riley II (FR II) source are able to describe a source with features (lobe length, axial ratio, X-ray luminosity, photon index and upper limit of radio luminosity) similar to the observations. HDF 130 is found to agree with the interpretation that it is an IC ghost of a powerful double-lobed radio source, and we are observing it at least a few Myr after jet activity (which lasted 5--100 Myr) has ceased. The minimum Lorentz factor of injected particles into the lobes from the hotspot is preferred to be $gammasim10^3$ for the model to describe the observed quantities well, assuming that the magnetic energy density, electron energy density, and lobe pressure at time of injection into the lobe are linked by constant factors according to a minimum energy argument, so that the minimum Lorentz factor is constrained by the lobe pressure. We also apply the model to match the features of 6C 0905+3955, a classical double FR II galaxy thought to have a low-energy cutoff of $gammasim10^4$ in the hotspot due to a lack of hotspot inverse-Compton X-ray emission. The models suggest that the low-energy cutoff in the hotspots of 6C 0905+3955 is $gammagtrsim 10^3$, just slightly above the particles required for X-ray emission.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا