ترغب بنشر مسار تعليمي؟ اضغط هنا

In order to discern the physical nature of many gamma-ray sources in the sky, we must look not only in spectral and spatial dimensions, but also understand their temporal variability. However, timing analysis of sources with a highly transient nature , such as magnetar bursts, is difficult: standard Fourier techniques developed for long-term variability generally observed, for example, from AGN often do not apply. Here, we present newly developed timing methods applicable to transient events of all kinds, and show their successful application to magnetar bursts observed with Fermi/GBM. Magnetars are a prime subject for timing studies, thanks to the detection of quasi-periodicities in magnetar Giant Flares and their potential to help shed light on the structure of neutron stars. Using state-of-the art statistical techniques, we search for quasi-periodicities (QPOs) in a sample of bursts from Soft Gamma Repeater SGR J0501+4516 observed with Fermi/GBM and provide upper limits for potential QPO detections. Additionally, for the first time, we characterise the broadband variability behaviour of magnetar bursts and highlight how this new information could provide us with another way to probe these mysterious objects.
The discovery of quasi-periodic oscillations (QPOs) in magnetar giant flares has opened up prospects for neutron star asteroseismology. However, with only three giant flares ever recorded, and only two with data of sufficient quality to search for QP Os, such analysis is seriously data limited. We set out a procedure for doing QPO searches in the far more numerous, short, less energetic magnetar bursts. The short, transient nature of these bursts requires the implementation of sophisticated statistical techniques to make reliable inferences. Using Bayesian statistics, we model the periodogram as a combination of red noise at low frequencies and white noise at high frequencies, which we show is a conservative approach to the problem. We use empirical models to make inferences about the potential signature of periodic and quasi-periodic oscillations at these frequencies. We compare our method with previously used techniques and find that although it is on the whole more conservative, it is also more reliable in ruling out false positives. We illustrate our Bayesian method by applying it to a sample of 27 bursts from the magnetar SGR J0501+4516 observed by the Fermi Gamma-ray Burst Monitor, and we find no evidence for the presence of QPOs in any of the bursts in the unbinned spectra, but do find a candidate detection in the binned spectra of one burst. However, whether this signal is due to a genuine quasi-periodic process, or can be attributed to unmodeled effects in the noise is at this point a matter of interpretation.
[Abridged] Radio galaxies and quasars are among the largest and most powerful single objects known and are believed to have had a significant impact on the evolving Universe and its large scale structure. We explore the intrinsic and extrinsic proper ties of the population of FRII objects (kinetic luminosities, lifetimes, and the central densities of their environments). In particular, the radio and kinetic luminosity functions of FRIIs are investigated using the complete, flux limited radio catalogues of 3CRR and Best et al. We construct multidimensional Monte Carlo simulations using semi-analytical models of FRII radio source growth to create artificial samples of radio galaxies. Unlike previous studies, we compare radio luminosity functions found with both the observed and simulated data to explore the fundamental source parameters. We allow the source physical properties to co-evolve with redshift, and we find that all the investigated parameters most likely undergo cosmological evolution. Strikingly, we find that the break in the kinetic luminosity function must undergo redshift evolution of at least (1+z)^3. The fundamental parameters are strongly degenerate, and independent constraints are necessary to draw more precise conclusions. We use the estimated kinetic luminosity functions to set constraints on the duty cycles of these powerful radio sources. A comparison of the duty cycles of powerful FRIIs with those determined from radiative luminosities of AGN of comparable black hole mass suggests a transition in behaviour from high to low redshifts, corresponding to either a drop in the typical black hole mass of powerful FRIIs at low redshifts, or a transition to a kinetically-dominated, radiatively-inefficient FRII population.
(Abridged) We present here a long (100ks) XMM-Newton follow-up of the Seyfert 1.8 galaxy ESO113-G010 performed in November 2005, in order to study over a longer time-scale its main X-ray properties. The source was found in a higher/softer time-averag ed flux state, and timing analysis of this source reveals strong, rapid variability. The Power Spectral Density (PSD) analysis indicates (at 95% c.l.) a break at 3.7 x 10^-4 Hz. This cut-off frequency is comparable to those measured in some other rapidly-variable Seyferts, such as MCG-6-30-15 and NGC4051. From the mass-luminosity-time-scale, we infer that M_BH ranges from 4 x 10^6 - 10^7 M_odot and the source is accreting at or close to the Eddington rate (or even higher). The existing data cannot distinguish between spectral pivoting of the continuum and a two-component origin for the spectral softening, primarily because the data do not span a broad enough flux range. In the case of the two-component model, the fractional offsets measured in the flux-flux plots increase significantly toward higher energies (similar to what is observed in MCG-6-30-15) as expected if there exists a constant reflection component. Contrary to May 2001, no significant highly redshifted emission line is observed (which might be related to the source flux level), while two narrow emission lines at about 6.5keV and 7keV are observed. The S/N is not high enough to establish if the lines are variable or constant. As already suggested by the 2001 observation, no significant constant narrow 6.4keV FeK line (EW~32eV) is observed, hence excluding any dominant emission from distant cold matter such as a torus in this Seyfert type 1.8 galaxy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا