ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate electrical control of ferromagnetism in field-effect transistors with a trilayer quantum well (QW) channel containing an ultrathin n-type ferromagnetic semiconductor (In,Fe)As layer. A gate voltage is applied to control the electron wa vefunctions {phi}i in the QW, such that the overlap of {phi}i and the (In,Fe)As layer is modified. The Curie temperature is largely changed by 42%, whereas the change in sheet carrier concentration is 2 - 3 orders of magnitude smaller than that of previous gating experiments. This result provides a new approach for versatile, low power, and ultrafast manipulation of magnetization.
We demonstrated the control of ferromagnetism in a surface quantum well containing a 5-nm-thick n-type ferromagnetic semiconductor (In,Fe)As layer sandwiched between two InAs layers, by manipulating the carrier wavefunction. The Curie temperature (Tc ) of the (In,Fe)As layer was effectively changed by up to 12 K ({Delta}Tc/Tc = 55%). Our calculation using the mean-field Zener theory reveals an unexpectedly large s-d exchange interaction in (In,Fe)As. Our results establish an effective way to control the ferromagnetism in quantum heterostructures of n-type FMSs, as well as require reconsideration on the current understanding of the s-d exchange interaction in narrow gap FMSs.
We show that by introducing isoelectronic iron (Fe) magnetic impurities and Beryllium (Be) double-donor atoms into InAs, it is possible to grow a n-type ferromagnetic semiconductor (FMS) with the ability to control ferromagnetism by both Fe and indep endent carrier doping by low-temperature molecular-beam epitaxy. We demonstrate that (In,Fe)As doped with electrons behaves as an n-type electron-induced FMS. This achievement opens the way to realize novel spin-devices such as spin light-emitting diodes or spin field-effect transistors, as well as helps understand the mechanism of carrier-mediated ferromagnetism in FMSs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا