ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, we consider the Minimum-Load $k$-Clustering/Facility Location (MLkC) problem where we are given a set $P$ of $n$ points in a metric space that we have to cluster and an integer $k$ that denotes the number of clusters. Additionally, we are given a set $F$ of cluster centers in the same metric space. The goal is to select a set $Csubseteq F$ of $k$ centers and assign each point in $P$ to a center in $C$, such that the maximum load over all centers is minimized. Here the load of a center is the sum of the distances between it and the points assigned to it. Although clustering/facility location problems have a rich literature, the minimum-load objective is not studied substantially, and hence MLkC has remained a poorly understood problem. More interestingly, the problem is notoriously hard even in some special cases including the one in line metrics as shown by Ahmadian et al. [ACM Trans. Algo. 2018]. They also show APX-hardness of the problem in the plane. On the other hand, the best-known approximation factor for MLkC is $O(k)$, even in the plane. In this work, we study a fair version of MLkC inspired by the work of Chierichetti et al. [NeurIPS, 2017], which generalizes MLkC. Here the input points are colored by one of the $ell$ colors denoting the group they belong to. MLkC is the special case with $ell=1$. Considering this problem, we are able to obtain a $3$-approximation in $f(k,ell)cdot n^{O(1)}$ time. Also, our scheme leads to an improved $(1 + epsilon)$-approximation in case of Euclidean norm, and in this case, the running time depends only polynomially on the dimension $d$. Our results imply the same approximations for MLkC with running time $f(k)cdot n^{O(1)}$, achieving the first constant approximations for this problem in general and Euclidean metric spaces.
In this work, we study the $k$-median clustering problem with an additional equal-size constraint on the clusters, from the perspective of parameterized preprocessing. Our main result is the first lossy ($2$-approximate) polynomial kernel for this pr oblem, parameterized by the cost of clustering. We complement this result by establishing lower bounds for the problem that eliminate the existences of an (exact) kernel of polynomial size and a PTAS.
De Berg et al. in [SICOMP 2020] gave an algorithmic framework for subexponential algorithms on geometric graphs with tight (up to ETH) running times. This framework is based on dynamic programming on graphs of weighted treewidth resulting in algorith ms that use super-polynomial space. We introduce the notion of weighted treedepth and use it to refine the framework of de Berg et al. for obtaining polynomial space (with tight running times) on geometric graphs. As a result, we prove that for any fixed dimension $d ge 2$ on intersection graphs of similarly-sized fat objects many well-known graph problems including Independent Set, $r$-Dominating Set for constant $r$, Cycle Cover, Hamiltonian Cycle, Hamiltonian Path, Steiner Tree, Connected Vertex Cover, Feedback Vertex Set, and (Connected) Odd Cycle Transversal are solvable in time $2^{O(n^{1-1/d})}$ and within polynomial space.
In general, a graph modification problem is defined by a graph modification operation $boxtimes$ and a target graph property ${cal P}$. Typically, the modification operation $boxtimes$ may be vertex removal}, edge removal}, edge contraction}, or edge addition and the question is, given a graph $G$ and an integer $k$, whether it is possible to transform $G$ to a graph in ${cal P}$ after applying $k$ times the operation $boxtimes$ on $G$. This problem has been extensively studied for particilar instantiations of $boxtimes$ and ${cal P}$. In this paper we consider the general property ${cal P}_{{phi}}$ of being planar and, moreover, being a model of some First-Order Logic sentence ${phi}$ (an FOL-sentence). We call the corresponding meta-problem Graph $boxtimes$-Modification to Planarity and ${phi}$ and prove the following algorithmic meta-theorem: there exists a function $f:Bbb{N}^{2}toBbb{N}$ such that, for every $boxtimes$ and every FOL sentence ${phi}$, the Graph $boxtimes$-Modification to Planarity and ${phi}$ is solvable in $f(k,|{phi}|)cdot n^2$ time. The proof constitutes a hybrid of two different classic techniques in graph algorithms. The first is the irrelevant vertex technique that is typically used in the context of Graph Minors and deals with properties such as planarity or surface-embeddability (that are not FOL-expressible) and the second is the use of Gaifmans Locality Theorem that is the theoretical base for the meta-algorithmic study of FOL-expressible problems.
We develop new algorithmic methods with provable guarantees for feature selection in regard to categorical data clustering. While feature selection is one of the most common approaches to reduce dimensionality in practice, most of the known feature s election methods are heuristics. We study the following mathematical model. We assume that there are some inadvertent (or undesirable) features of the input data that unnecessarily increase the cost of clustering. Consequently, we want to select a subset of the original features from the data such that there is a small-cost clustering on the selected features. More precisely, for given integers $ell$ (the number of irrelevant features) and $k$ (the number of clusters), budget $B$, and a set of $n$ categorical data points (represented by $m$-dimensional vectors whose elements belong to a finite set of values $Sigma$), we want to select $m-ell$ relevant features such that the cost of any optimal $k$-clustering on these features does not exceed $B$. Here the cost of a cluster is the sum of Hamming distances ($ell_0$-distances) between the selected features of the elements of the cluster and its center. The clustering cost is the total sum of the costs of the clusters. We use the framework of parameterized complexity to identify how the complexity of the problem depends on parameters $k$, $B$, and $|Sigma|$. Our main result is an algorithm that solves the Feature Selection problem in time $f(k,B,|Sigma|)cdot m^{g(k,|Sigma|)}cdot n^2$ for some functions $f$ and $g$. In other words, the problem is fixed-parameter tractable parameterized by $B$ when $|Sigma|$ and $k$ are constants. Our algorithm is based on a solution to a more general problem, Constrained Clustering with Outliers. We also complement our algorithmic findings with complexity lower bounds.
In the Categorical Clustering problem, we are given a set of vectors (matrix) A={a_1,ldots,a_n} over Sigma^m, where Sigma is a finite alphabet, and integers k and B. The task is to partition A into k clusters such that the median objective of the clu stering in the Hamming norm is at most B. That is, we seek a partition {I_1,ldots,I_k} of {1,ldots,n} and vectors c_1,ldots,c_kinSigma^m such that sum_{i=1}^ksum_{jin I_i}d_h(c_i,a_j)leq B, where d_H(a,b) is the Hamming distance between vectors a and b. Fomin, Golovach, and Panolan [ICALP 2018] proved that the problem is fixed-parameter tractable (for binary case Sigma={0,1}) by giving an algorithm that solves the problem in time 2^{O(Blog B)} (mn)^{O(1)}. We extend this algorithmic result to a popular capacitated clustering model, where in addition the sizes of the clusters should satisfy certain constraints. More precisely, in Capacitated Clustering, in addition, we are given two non-negative integers p and q, and seek a clustering with pleq |I_i|leq q for all iin{1,ldots,k}. Our main theorem is that Capacitated Clustering is solvable in time 2^{O(Blog B)}|Sigma|^B(mn)^{O(1)}. The theorem not only extends the previous algorithmic results to a significantly more general model, it also implies algorithms for several other variants of Categorical Clustering with constraints on cluster sizes.
The elimination distance to some target graph property P is a general graph modification parameter introduced by Bulian and Dawar. We initiate the study of elimination distances to graph properties expressible in first-order logic. We delimit the pro blems fixed-parameter tractability by identifying sufficient and necessary conditions on the structure of prefixes of first-order logic formulas. Our main result is the following meta-theorem: for every graph property P expressible by a first order-logic formula phiin Sigma_3, that is, of the form phi=exists x_1exists x_2cdots exists x_r forall y_1forall y_2cdots forall y_s exists z_1exists z_2cdots exists z_t psi, where psi is a quantifier-free first-order formula, checking whether the elimination distance of a graph to P does not exceed k, is fixed-parameter tractable parameterized by k. Properties of graphs expressible by formulas from Sigma_3 include being of bounded degree, excluding a forbidden subgraph, or containing a bounded dominating set. We complement this theorem by showing that such a general statement does not hold for formulas with even slightly more expressive prefix structure: there are formulas phiin Pi_3, for which computing elimination distance is W[2]-hard.
We introduce the rendezvous game with adversaries. In this game, two players, {sl Facilitator} and {sl Disruptor}, play against each other on a graph. Facilitator has two agents, and Disruptor has a team of $k$ agents located in some vertices of the graph. They take turns in moving their agents to adjacent vertices (or staying). Facilitator wins if his agents meet in some vertex of the graph. The goal of Disruptor is to prevent the rendezvous of Facilitators agents. Our interest is to decide whether Facilitator can win. It appears that, in general, the problem is PSPACE-hard and, when parameterized by $k$, co-W[2]-hard. Moreover, even the games variant where we ask whether Facilitator can ensure the meeting of his agents within $tau$ steps is co-NP-complete already for $tau=2$. On the other hand, for chordal and $P_5$-free graphs, we prove that the problem is solvable in polynomial time. These algorithms exploit an interesting relation of the game and minimum vertex cuts in certain graph classes. Finally, we show that the problem is fixed-parameter tractable parameterized by both the graphs neighborhood diversity and $tau$.
We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental combinatorial problems, two from the theory of matroids and the third from graph theory. The input to the Weighted Diverse Bases problem consists of a matroid $M$, a weight function $omega:E(M)tomathbb{N}$, and integers $kgeq 1, dgeq 0$. The task is to decide if there is a collection of $k$ bases $B_{1}, dotsc, B_{k}$ of $M$ such that the weight of the symmetric difference of any pair of these bases is at least $d$. This is a diverse variant of the classical matroid base packing problem. The input to the Weighted Diverse Common Independent Sets problem consists of two matroids $M_{1},M_{2}$ defined on the same ground set $E$, a weight function $omega:Etomathbb{N}$, and integers $kgeq 1, dgeq 0$. The task is to decide if there is a collection of $k$ common independent sets $I_{1}, dotsc, I_{k}$ of $M_{1}$ and $M_{2}$ such that the weight of the symmetric difference of any pair of these sets is at least $d$. This is motivated by the classical weighted matroid intersection problem. The input to the Diverse Perfect Matchings problem consists of a graph $G$ and integers $kgeq 1, dgeq 0$. The task is to decide if $G$ contains $k$ perfect matchings $M_{1},dotsc,M_{k}$ such that the symmetric difference of any two of these matchings is at least $d$. We show that Weighted Diverse Bases and Weighted Diverse Common Independent Sets are both NP-hard, and derive fixed-parameter tractable (FPT) algorithms for all three problems with $(k,d)$ as the parameter.
An enumeration kernel as defined by Creignou et al. [Theory Comput. Syst. 2017] for a parameterized enumeration problem consists of an algorithm that transforms each instance into one whose size is bounded by the parameter plus a solution-lifting alg orithm that efficiently enumerates all solutions from the set of the solutions of the kernel. We propose to consider two n
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا