ترغب بنشر مسار تعليمي؟ اضغط هنا

The Next Generation Transit Survey (NGTS) is a new ground-based sky survey designed to find transiting Neptunes and super-Earths. By covering at least sixteen times the sky area of Kepler we will find small planets around stars that are sufficiently bright for radial velocity confirmation, mass determination and atmospheric characterisation. The NGTS instrument will consist of an array of twelve independently pointed 20cm telescopes fitted with red-sensitive CCD cameras. It will be constructed at the ESO Paranal Observatory, thereby benefiting from the very best photometric conditions as well as follow up synergy with the VLT and E-ELT. Our design has been verified through the operation of two prototype instruments, demonstrating white noise characteristics to sub-mmag photometric precision. Detailed simulations show that about thirty bright super-Earths and up to two hundred Neptunes could be discovered. Our science operations are due to begin in 2014.
We present a comparative study of the thermal emission of the transiting exoplanets WASP-1b and WASP-2b using the Spitzer Space Telescope. The two planets have very similar masses but suffer different levels of irradiation and are predicted to fall e ither side of a sharp transition between planets with and without hot stratospheres. WASP-1b is one of the most highly irradiated planets studied to date. We measure planet/star contrast ratios in all four of the IRAC bands for both planets (3.6-8.0um), and our results indicate the presence of a strong temperature inversion in the atmosphere of WASP-1b, particularly apparent at 8um, and no inversion in WASP-2b. In both cases the measured eclipse depths favor models in which incident energy is not redistributed efficiently from the day side to the night side of the planet. We fit the Spitzer light curves simultaneously with the best available radial velocity curves and transit photometry in order to provide updated measurements of system parameters. We do not find significant eccentricity in the orbit of either planet, suggesting that the inflated radius of WASP-1b is unlikely to be the result of tidal heating. Finally, by plotting ratios of secondary eclipse depths at 8um and 4.5um against irradiation for all available planets, we find evidence for a sharp transition in the emission spectra of hot Jupiters at an irradiation level of 2 x 10^9 erg/s/cm^2. We suggest this transition may be due to the presence of TiO in the upper atmospheres of the most strongly irradiated hot Jupiters.
59 - Gavin Ramsay 2008
Intermediate Polars (IPs) are a group of cataclysmic variables (CVs) which are thought to contain white dwarfs which have a magnetic field strength in the range ~0.1-10MG. A significant fraction of the X-ray sources detected in recent deep surveys ha s been postulated to consist of IPs. Until now two of the defining characteristics of IPs have been the presence of high (and complex) absorption in their X-ray spectra and the presence of a stable modulation in the X-ray light curve which is a signature of the spin period, or the beat period, of the accreting white dwarf. Three CVs, V426 Oph, EI UMa and LS Peg, have characteristics which are similar to IPs. However, there has been only tentative evidence for a coherent period in their X-ray light curve. We present the results of a search for coherent periods in XMM-Newton data of these sources using an auto-regressive analysis which models the effects of red-noise. We confirm the detection of a ~760 sec period in the soft X-ray light curve of EI UMa reported by Reimer et al and agree that this represents the spin period. We also find evidence for peaks in the power spectrum of each source in the range 100-200 sec which are just above the 3sigma confidence level. We do not believe that they represent genuine coherent modulations. However, their X-ray spectra are very similar to those of known IPs. We believe that all three CVs are bona fide IPs. We speculate that V426 Oph and LS Peg do not show evidence for a spin period since they have closely aligned magnetic and spin axes. We discuss the implications that this has for the defining characteristics of IPs.
72 - John Southworth 2007
We show that the surface gravity of a transiting extrasolar planet can be calculated from only the spectroscopic orbit of its parent star and the analysis of its transit light curve. This does not require additional constraints, such as are often inf erred from theoretical stellar models or model atmospheres. The planets surface gravity can therefore be measured precisely and from only directly observable quantities. We outline the method and apply it to the case of the first known transiting extrasolar planet, HD 209458b. We find a surface gravity of g_p = 9.28 +/- 0.15 m/s, which is an order of magnitude more precise than the best available measurements of its mass, radius and density. This confirms that the planet has a much lower surface gravity that that predicted by published theoretical models of gas giant planets. We apply our method to all fourteen known transiting extrasolar planets and find a significant correlation between surface gravity and orbital period, which is related to the known correlation between mass and period. This correlation may be the underlying effect as surface gravity is a fundamental parameter in the evaporation of planetary atmospheres.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا