ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the two main constituent galaxies of a constrained simulation of the Local Group as candidates for the Milky Way (MW) and Andromeda (M31). We focus on the formation of the stellar discs and its relation to the formation of the group as a ric h system with two massive galaxies, and investigate the effects of mergers and accretion as drivers of morphological transformations. We use a state-of-the-art hydrodynamical code which includes star formation, feedback and chemical enrichment to carry out our study. We run two simulations, where we include or neglect the effects of radiation pressure from stars, to investigate the impact of this process on the morphologies and star formation rates of the simulated galaxies. We find that the simulated M31 and MW have different formation histories, even though both inhabit, at z=0, the same environment. These differences directly translate into and explain variations in their star formation rates, in-situ fractions and final morphologies. The M31 candidate has an active merger history, as a result of which its stellar disc is unable to survive unaffected until the present time. In contrast, the MW candidate has a smoother history with no major mergers at late times, and forms a disc that grows steadily; at z=0 the simulated MW has an extended, rotationally-supported disc which is dominant over the bulge. Our two feedback implementations predict similar evolution of the galaxies and their discs, although some variations are detected, the most important of which is the formation time of the discs: in the model with weaker/stronger feedback the discs form earlier/later. In summary, by comparing the formation histories of the two galaxies, we conclude that the particular merger/accretion history of a galaxy rather than its environment at the LG-scales is the main driver of the formation and subsequent growth or destruction of galaxy discs.
Feedback from supernovae is an essential aspect of galaxy formation. In order to improve subgrid models of feedback we perform a series of numerical experiments to investigate how supernova explosions power galactic winds. We use the Flash hydrodynam ic code to model a simplified ISM, including gravity, hydrodynamics, radiative cooling above 10,000 K, and star formation that reproduces the Kennicutt-Schmidt relation. By simulating a small patch of the ISM in a tall box perpendicular to the disk, we obtain sub-parsec resolution allowing us to resolve individual supernova events and we investigate how the wind properties depend on those of the ISM and the galaxy. We find that outflows are more efficient in disks with lower surface densities or gas fractions. A simple model in which the warm cloudy medium is the barrier that limits the expansion of blast waves reproduces the scaling of outflow properties with disk parameters at high star formation rates. The scaling we find sets the investigation of galaxy winds on a new footing, providing a physically motivated sub-grid description of winds that can be implemented in cosmological hydrodynamic simulations and phenomenological models. [Abridged]
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا