ترغب بنشر مسار تعليمي؟ اضغط هنا

59 - Peter Bierhorst 2013
Recent experiments have reached detection efficiencies sufficient to close the detection loophole, testing the Clauser-Horne (CH) version of Bells inequality. For a similar future experiment to be completely loophole-free, it will be important to hav e discrete experimental trials with randomized measurement settings for each trial, and the statistical analysis should not overlook the possibility of a local state varying over time with possible dependence on earlier trials (the memory loophole). In this paper, a mathematical model for such a CH experiment is presented, and a method for statistical analysis that is robust to memory effects is introduced. Additionally, a new method for calculating exact p-values for martingale-based statistics is described; previously, only non-sharp upper bounds derived from the Azuma-Hoeffding inequality have been available for such statistics. This improvement decreases the required number of experimental trials to demonstrate non-locality. The statistical techniques are applied to the data of recent experiments and found to perform well.
278 - Peter Bierhorst 2013
Recent experiments have reached detection efficiencies sufficient to close the detection loophole with photons. Both experiments ran multiple successive trials in fixed measurement configurations, rather than randomly re-setting the measurement confi gurations before each measurement trial. This opens a new potential loophole for a local hidden variable theory. The loophole invalidates one proposed method of statistical analysis of the experimental results, as demonstrated in this note. Therefore a different analysis will be necessary to definitively assert that these experiments are subject only to the locality loophole.
59 - Peter Bierhorst 2013
The Clauser-Horne-Shimony-Holt (CHSH) inequality is a constraint that local theories must obey. Quantum Mechanics predicts a violation of this inequality in certain experimental settings. Treatments of this subject frequently make simplifying assumpt ions about the probability spaces available to a local hidden variable theory, such as assuming the state of the system is a discrete or absolutely continuous random variable, or assuming that repeated experimental trials are independent and identically distributed. In this paper, we do two things: first, show that the CHSH inequality holds even for completely general state variables in the measure-theoretic setting, and second, demonstrate how to drop the assumption of independence of subsequent trials while still being able to perform a hypothesis test that will distinguish Quantum Mechanics from local theories. The statistical strength of such a test is computed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا