ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the problem of novel view synthesis of a scene comprised of 3D objects. We propose a simple yet effective approach that is neither continuous nor implicit, challenging recent trends on view synthesis. We demonstrate that although continuous radiance field representations have gained a lot of attention due to their expressive power, our simple approach obtains comparable or even better novel view reconstruction quality comparing with state-of-the-art baselines while increasing rendering speed by over 400x. Our model is trained in a category-agnostic manner and does not require scene-specific optimization. Therefore, it is able to generalize novel view synthesis to object categories not seen during training. In addition, we show that with our simple formulation, we can use view synthesis as a self-supervision signal for efficient learning of 3D geometry without explicit 3D supervision.
We study the problem of directly optimizing arbitrary non-differentiable task evaluation metrics such as misclassification rate and recall. Our method, named MetricOpt, operates in a black-box setting where the computational details of the target met ric are unknown. We achieve this by learning a differentiable value function, which maps compact task-specific model parameters to metric observations. The learned value function is easily pluggable into existing optimizers like SGD and Adam, and is effective for rapidly finetuning a pre-trained model. This leads to consistent improvements since the value function provides effective metric supervision during finetuning, and helps to correct the potential bias of loss-only supervision. MetricOpt achieves state-of-the-art performance on a variety of metrics for (image) classification, image retrieval and object detection. Solid benefits are found over competing methods, which often involve complex loss design or adaptation. MetricOpt also generalizes well to new tasks and model architectures.
Robots that are trained to perform a task in a fixed environment often fail when facing unexpected changes to the environment due to a lack of exploration. We propose a principled way to adapt the policy for better exploration in changing sparse-rewa rd environments. Unlike previous works which explicitly model environmental changes, we analyze the relationship between the value function and the optimal exploration for a Gaussian-parameterized policy and show that our theory leads to an effective strategy for adjusting the variance of the policy, enabling fast adapt to changes in a variety of sparse-reward environments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا