ترغب بنشر مسار تعليمي؟ اضغط هنا

The pairing correlations in hot nuclei $^{162}$Dy are investigated in terms of the thermodynamical properties by covariant density functional theory. The heat capacities $C_V$ are evaluated in the canonical ensemble theory and the paring correlations are treated by a shell-model-like approach, in which the particle number is conserved exactly. A S-shaped heat capacity curve, which agrees qualitatively with the experimental data, has been obtained and analyzed in details. It is found that the one-pair-broken states play crucial roles in the appearance of the S shape of the heat capacity curve. Moreover, due to the effect of the particle-number conservation, the pairing gap varies smoothly with the temperature, which indicates a gradual transition from the superfluid to the normal state.
The effect of nuclear superfluidity on antimagnetic rotation bands in $^{105}$Cd and $^{106}$Cd are investigated by the cranked shell model with the pairing correlations and the blocking effects treated by a particle-number conserving method. The exp erimental moments of inertia and the reduced $B(E2)$ transition values are excellently reproduced. The nuclear superfluidity is essential to reproduce the experimental moments of inertia. The two-shears-like mechanism for the antimagnetic rotation is investigated by examining the shears angle, i.e., the closing of the two proton hole angular momenta, and its sensitive dependence on the nuclear superfluidity is revealed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا