ترغب بنشر مسار تعليمي؟ اضغط هنا

331 - Peng Bai , Martin Z. Bazant 2014
Interfacial charge transfer is widely assumed to obey Butler-Volmer kinetics. For certain liquid-solid interfaces, Marcus-Hush-Chidsey theory is more accurate and predictive, but it has not been applied to porous electrodes. Here we report a simple m ethod to extract the charge transfer rates in carbon-coated LiFePO4 porous electrodes from chronoamperometry experiments, obtaining curved Tafel plots that contradict the Butler-Volmer equation but fit the Marcus-Hush-Chidsey prediction over a range of temperatures. The fitted reorganization energy matches the Born solvation energy for electron transfer from carbon to the iron redox site. The kinetics are thus limited by electron transfer at the solid-solid (carbon-LixFePO4) interface, rather than by ion transfer at the liquid-solid interface, as previously assumed. The proposed experimental method generalizes Chidseys method for phase-transforming particles and porous electrodes, and the results show the need to incorporate Marcus kinetics in modeling batteries and other electrochemical systems.
145 - Peng Bai , Guangyu Tian 2012
Using a simple mathematical model, we demonstrate that statistical kinetics of phase-transforming nanoparticles in porous electrodes results in macroscopic non-monotonic transient currents, which could be misinterpreted as the nucleation and growth m echanism by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory. Our model decouples the roles of nucleation and surface reaction in the electrochemically driven phase-transformation process by a special activation rate and the mean particle-filling speed of active nanoparticles, which can be extracted from the responses of porous electrodes to identify the dynamics in single composing nanoparticles.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا