ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider the non-equilibrium orbital dynamics of spin-polarized ultracold fermions in the first excited band of an optical lattice. A specific lattice depth and filling configuration is designed to allow the $p_x$ and $p_y$ excited orbital degrees of freedom to act as a pseudo-spin. Starting from the full Hamiltonian for p-wave interactions in a periodic potential, we derive an extended Hubbard-type model that describes the anisotropic lattice dynamics of the excited orbitals at low energy. We then show how dispersion engineering can provide a viable route to realizing collective behavior driven by p-wave interactions. In particular, Bragg dressing and lattice depth can reduce single-particle dispersion rates, such that a collective many-body gap is opened with only moderate Feshbach enhancement of p-wave interactions. Physical insight into the emergent gap-protected collective dynamics is gained by projecting the Hamiltonian into the Dicke manifold, yielding a one-axis twisting model for the orbital pseudo-spin that can be probed using conventional Ramsey-style interferometry. Experimentally realistic protocols to prepare and measure the many-body dynamics are discussed, including the effects of band relaxation, particle loss, spin-orbit coupling, and doping.
We propose a quantum enhanced interferometric protocol for gravimetry and force sensing using cold atoms in an optical lattice supported by a standing-wave cavity. By loading the atoms in partially delocalized Wannier-Stark states, it is possible to cancel the undesirable inhomogeneities arising from the mismatch between the lattice and cavity fields and to generate spin squeezed states via a uniform one-axis twisting model. The quantum enhanced sensitivity of the states is combined with the subsequent application of a compound pulse sequence that allows to separate atoms by several lattice sites. This, together with the capability to load small atomic clouds in the lattice at micrometric distances from a surface, make our setup ideal for sensing short-range forces. We show that for arrays of $10^4$ atoms, our protocol can reduce the required averaging time by a factor of $10$ compared to unentangled lattice-based interferometers after accounting for primary sources of decoherence.
A recent experiment reported for the first time the preparation of a Fermi degenerate gas of polar molecules and observed a suppression of their chemical reaction rate compared to the one expected from a purely classical treatment. While it was hypot hesized that the suppression in the ultracold regime had its roots in the Fermi statistics of the molecules, this argument is inconsistent with the fact that the Fermi pressure should set a lower bound for the chemical reaction rate. Therefore it can not be explained from standard two-body $p$-wave inelastic collisions. Here we develop a simple model of chemical reactions that occur via the formation and decay of molecular complexes. We indeed find that pure two-body molecule losses are unable to explain the observed suppression. Instead we extend our description beyond two-body physics by including effective complex-molecule interactions possible emerging from many-body and effective medium effects at finite densities and in the presence of trapping light. %Under this framework we observe that additional complex-molecule collisions, which manifest as a net three-body molecular interaction could give rise to the additional suppression. Although our effective model is able to quantitatively reproduce recent experimental observations, a detailed understanding of the actual physical mechanism responsible for these higher-order interaction processes is still pending.
One of the most important tasks in modern quantum science is to coherently control and entangle many-body systems, and to subsequently use these systems to realize powerful quantum technologies such as quantum-enhanced sensors. However, many-body ent angled states are difficult to prepare and preserve since internal dynamics and external noise rapidly degrade any useful entanglement. Here, we introduce a protocol that counterintuitively exploits inhomogeneities, a typical source of dephasing in a many-body system, in combination with interactions to generate metrologically useful and robust many-body entangled states. Motivated by current limitations in state-of-the-art three-dimensional (3D) optical lattice clocks (OLCs) operating at quantum degeneracy, we use local interactions in a Hubbard model with spin-orbit coupling to achieve a spin-locking effect. In addition to prolonging inter-particle spin coherence, spin-locking transforms the dephasing effect of spin-orbit coupling into a collective spin-squeezing process that can be further enhanced by applying a modulated drive. Our protocol is fully compatible with state-of-the-art 3D OLC interrogation schemes and may be used to improve their sensitivity, which is currently limited by the intrinsic quantum noise of independent atoms. We demonstrate that even with realistic experimental imperfections, our protocol may generate $sim10$--$14$ dB of spin squeezing in $sim1$ second with $sim10^2$--$10^4$ atoms. This capability allows OLCs to enter a new era of quantum enhanced sensing using correlated quantum states of driven non-equilibrium systems.
A proposed paradigm for out-of-equilibrium quantum systems is that an analogue of quantum phase transitions exists between parameter regimes of qualitatively distinct time-dependent behavior. Here, we present evidence of such a transition between dyn amical phases in a cold-atom quantum simulator of the collective Heisenberg model. Our simulator encodes spin in the hyperfine states of ultracold fermionic potassium. Atoms are pinned in a network of single-particle modes, whose spatial extent emulates the long-range interactions of traditional quantum magnets. We find that below a critical interaction strength, magnetization of an initially polarized fermionic gas decays quickly, while above the transition point, the magnetization becomes long-lived, due to an energy gap that protects against dephasing by the inhomogeneous axial field. Our quantum simulation reveals a non-equilibrium transition predicted to exist but not yet directly observed in quenched s-wave superconductors.
We propose a sub-Doppler laser cooling mechanism that takes advantage of the unique spectral features and extreme dispersion generated by the phenomenon of electromagnetically induced transparency (EIT). EIT is a destructive quantum interference phen omenon experienced by atoms with multiple internal quantum states when illuminated by laser fields with appropriate frequencies. By detuning the lasers slightly from the dark resonance, we observe that, within the transparency window, atoms can be subject to a strong viscous force, while being only slightly heated by the diffusion caused by spontaneous photon scattering. In contrast to other laser cooling schemes, such as polarization gradient cooling or EIT-sideband cooling, no external magnetic field or strong external confining potential is required. Using a semiclassical approximation, we derive analytically quantitative expressions for the steady-state temperature, which is confirmed by full quantum mechanical numerical simulations. We find that the lowest achievable temperatures approach the single-photon recoil energy. In addition to dissipative forces, the atoms are subject to a stationary conservative potential, leading to the possibility of spatial confinement. We find that under typical experimental parameters this effect is weak and stable trapping is not possible.
Spin-orbit (SO) interactions give a spin-dependent correction r_so to the position operator, referred to as the anomalous position operator. We study the contributions of r_so to the spin-Hall effect (SHE) in quasi two-dimensional (2D) semiconductor quantum wells with strong band structure SO interactions that cause spin precession. The skew scattering and side-jump scattering terms in the SHE vanish, but we identify two additional terms in the SHE, due to r_so, which have not been considered in the literature so far. One term reflects the modification of the spin precession due to the action of the external electric field (the field drives the current in the quantum well), which produces, via r_so, an effective magnetic field perpendicular to the plane of the quantum well. The other term reflects a similar modification of the spin precession due to the action of the electric field created by random impurities, and appears in a careful formulation of the Born approximation. We refer to these two effects collectively as anomalous spin precession and we note that they contribute to the SHE to the first order in the SO coupling constant even though they formally appear to be of second order. In electron systems with weak momentum scattering, the contribution of the anomalous spin precession due to the external electric field equals 1/2 the usual side-jump SHE, while the additional impurity-dependent contribution depends on the form of the band structure SO coupling. For band structure SO linear in wave vector the two additional contributions cancel. For band structure SO cubic in wave vector only the contribution due to external electric field is present, and can be detected through its density dependence. In 2D hole systems both anomalous spin precession contributions vanish identically.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا