ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose an experimental setup to measure the work performed in a normal-metal/insulator/superconducting (NIS) junction, subjected to a voltage change and in contact with a thermal bath. We compute the performed work and argue that the associated h eat release can be measured experimentally. Our results are based on an equivalence between the dynamics of the NIS junction and that of an assembly of two-level systems subjected to a circularly polarised field, for which we can determine the work-characteristic function exactly. The average work dissipated by the NIS junction, as well as its fluctuations, are determined. From the work characteristic function, we also compute the work probability-distribution and show that it does not have a Gaussian character. Our results allow for a direct experimental test of the Crooks-Tasaki fluctuation relation.
We provide an account of the static and dynamic properties of hard-core bosons in a one-dimensional lattice subject to a multi-chromatic quasiperiodic potential for which the single-particle spectrum has mobility edges. We use the mapping from strong ly interacting bosons to weakly interacting fermions, and provide exact numerical results for hard-core bosons in and out of equilibrium. In equilibrium, we find that the system behaves like a quasi-condensate (insulator) depending on whether the Fermi surface of the corresponding fermionic system lies in a spectral region where the single-particle states are delocalized (localized). We also study non-equilibrium expansion dynamics of initially trapped bosons, and demonstrate that the extent of partial localization is determined by the single-particle spectrum.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا