ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuing the project described by Kato et al. (2009, arXiv:0905.1757), we collected times of superhump maxima for 102 SU UMa-type dwarf novae observed mainly during the 2014-2015 season and characterized these objects. Our project has greatly impro ved the statistics of the distribution of orbital periods, which is a good approximation of the distribution of cataclysmic variables at the terminal evolutionary stage, and confirmed the presence of a period minimum at a period of 0.053 d and a period spike just above this period. The number density monotonically decreased toward the longer period and there was no strong indication of a period gap. We detected possible negative superhumps in Z Cha. It is possible that normal outbursts are also suppressed by the presence of a disk tilt in this system. There was no indication of enhanced orbital humps just preceding the superoutburst, and this result favors the thermal-tidal disk instability as the origin of superoutbursts. We detected superhumps in three AM CVn-type dwarf novae. Our observations and recent other detections suggest that 8% of objects showing dwarf nova-type outbursts are AM CVn-type objects. AM CVn-type objects and EI Psc-type object may be more abundant than previously recognized. OT J213806, a WZ Sge-type object, exhibited a remarkably different feature between the 2010 and 2014 superoutbursts. Although the 2014 superoutburst was much fainter the plateau phase was shorter than the 2010 one, the course of the rebrightening phase was similar. This object indicates that the O-C diagrams of superhumps can be indeed variable at least in WZ Sge-type objects. Four deeply eclipsing SU UMa-type dwarf novae (ASASSN-13cx, ASASSN-14ag, ASASSN-15bu, NSV 4618) were identified. We studied long-term trends in supercycles in MM Hya and CY UMa and found systematic variations of supercycles of ~20%.
Continuing the project described by Kato et al. (2009, PASJ, 61, S395, arXiv:0905.1757), we collected times of superhump maxima for 56 SU UMa-type dwarf novae mainly observed during the 2013-2014 season and characterized these objects. We detected ne gative superhumps in VW Hyi and indicated that the low number of normal outbursts in some supercycle can be interpreted as a result of the disk tilt. This finding, combined with the Kepler observation of V1504 Cyg and V344 Lyr, suggests that the disk tilt is responsible for modulating the outburst pattern in SU UMa-type dwarf novae. We also studied the deeply eclipsing WZ Sge-type dwarf nova MASTER OT J005740.99+443101.5 and found evidence of a sharp eclipse during the phase of early superhumps. The profile can be reproduced by a combination of the eclipse of the axisymmetric disk and the uneclipsed light source of early superhumps. This finding confirms the lack of evince of a greatly enhanced hot spot during the early stage of WZ Sge-type outburst. We detected growing (stage A) superhumps in MN Dra and give a suggestion that some of SU UMa-type dwarf novae situated near the critical condition of tidal instability may show long-lasting stage A superhumps. The large negative period derivatives reported in such systems can be understood a result of the combination of stage A and B superhumps. The WZ Sge-type dwarf novae AL Com and ASASSN-13ck showed a long-lasting (plateau-type) rebrightening. In the early phase of the rebrightening, both objects showed a precursor-like outburst, suggesting that the long-lasting rebrightening is triggered by a precursor outburst.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا