ترغب بنشر مسار تعليمي؟ اضغط هنا

73 - Ingo Thies 2010
Most stars are born in clusters and the resulting gravitational interactions between cluster members may significantly affect the evolution of circumstellar discs and therefore the formation of planets and brown dwarfs. Recent findings suggest that t idal perturbations of typical circumstellar discs due to close encounters may inhibit rather than trigger disc fragmentation and so would seem to rule out planet formation by external tidal stimuli. However, the disc models in these calculations were restricted to disc radii of 40 AU and disc masses below 0.1 M_sun. Here we show that even modest encounters can trigger fragmentation around 100 AU in the sorts of massive (~0.5 M_sun), extended (>=100 AU) discs that are observed around young stars. Tidal perturbation alone can do this, no disc-disc collision is required. We also show that very-low-mass binary systems can form through the interaction of objects in the disc. In our computations, otherwise non-fragmenting massive discs, once perturbed, fragment into several objects between about 0.01 and 0.1 M_sun, i.e., over the whole brown dwarf mass range. Typically these orbit on highly eccentric orbits or are even ejected. While probably not suitable for the formation of Jupiter- or Neptune-type planets, our scenario provides a possible formation mechanism for brown dwarfs and very massive planets which, interestingly, leads to a mass distribution consistent with the canonical substellar IMF. As a minor outcome, a possible explanation for the origin of misaligned extrasolar planetary systems is discussed.
We explore the gravitational influence of pressure supported stellar systems on the internal density distribution of a gaseous environment. We conclude that compact massive star clusters with masses >= 10^6 M_sun act as cloud condensation nuclei and are able to accrete gas recurrently from a warm interstellar medium which may cause further star formation events and account for multiple stellar populations in the most massive globular and nuclear star clusters. The same analytical arguments can be used to decide whether an arbitrary spherical stellar system is able to keep warm or hot interstellar material or not. These mass thresholds coincide with transition masses between pressure supported galaxies of different morphological types.
The existence of complex stellar populations in some star clusters challenges the understanding of star formation. E.g. the ONC or the sigma Orionis cluster host much older stars than the main bulk of the young stars. Massive star clusters (omega Cen , G1, M54) show metallicity spreads corresponding to different stellar populations with large age gaps. We show that (i) during star cluster formation field stars can be captured and (ii) very massive globular clusters can accrete gas from a long-term embedding inter stellar medium and restart star formation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا