ترغب بنشر مسار تعليمي؟ اضغط هنا

The two classic theories for the existence of sexual replication are that sex purges deleterious mutations from a population, and that sex allows a population to adapt more rapidly to changing environments. These two theories have often been presente d as opposing explanations for the existence of sex. Here, we develop and analyze evolutionary models based on the asexual and sexual replication pathways in Saccharomyces cerevisiae (Bakers yeast), and show that sexual replication can both purge deleterious mutations in a static environment, as well as lead to faster adaptation in a dynamic environment. This implies that sex can serve a dual role, which is in sharp contrast to previous theories.
This Letter studies the quasispecies dynamics of a population capable of genetic repair evolving on a time-dependent fitness landscape. We develop a model that considers an asexual population of single-stranded, conservatively replicating genomes, wh ose only source of genetic variation is due to copying errors during replication. We consider a time-dependent, single-fitness-peak landscape where the master sequence changes by a single point mutation every time $ tau $. We are able to analytically solve for the evolutionary dynamics of the population in the point-mutation limit. In particular, our model provides an analytical expression for the fraction of mutators in the dynamic fitness landscape that agrees well with results from stochastic simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا