ترغب بنشر مسار تعليمي؟ اضغط هنا

Reasoning about the future behavior of other agents is critical to safe robot navigation. The multiplicity of plausible futures is further amplified by the uncertainty inherent to agent state estimation from data, including positions, velocities, and semantic class. Forecasting methods, however, typically neglect class uncertainty, conditioning instead only on the agents most likely class, even though perception models often return full class distributions. To exploit this information, we present HAICU, a method for heterogeneous-agent trajectory forecasting that explicitly incorporates agents class probabilities. We additionally present PUP, a new challenging real-world autonomous driving dataset, to investigate the impact of Perceptual Uncertainty in Prediction. It contains challenging crowded scenes with unfiltered agent class probabilities that reflect the long-tail of current state-of-the-art perception systems. We demonstrate that incorporating class probabilities in trajectory forecasting significantly improves performance in the face of uncertainty, and enables new forecasting capabilities such as counterfactual predictions.
Tracking by detection, the dominant approach for online multi-object tracking, alternates between localization and re-identification steps. As a result, it strongly depends on the quality of instantaneous observations, often failing when objects are not fully visible. In contrast, tracking in humans is underlined by the notion of object permanence: once an object is recognized, we are aware of its physical existence and can approximately localize it even under full occlusions. In this work, we introduce an end-to-end trainable approach for joint object detection and tracking that is capable of such reasoning. We build on top of the recent CenterTrack architecture, which takes pairs of frames as input, and extend it to videos of arbitrary length. To this end, we augment the model with a spatio-temporal, recurrent memory module, allowing it to reason about object locations and identities in the current frame using all the previous history. It is, however, not obvious how to train such an approach. We study this question on a new, large-scale, synthetic dataset for multi-object tracking, which provides ground truth annotations for invisible objects, and propose several approaches for supervising tracking behind occlusions. Our model, trained jointly on synthetic and real data, outperforms the state of the art on KITTI, and MOT17 datasets thanks to its robustness to occlusions.
This paper addresses the task of unsupervised learning of representations for action recognition in videos. Previous works proposed to utilize future prediction, or other domain-specific objectives to train a network, but achieved only limited succes s. In contrast, in the relevant field of image representation learning, simpler, discrimination-based methods have recently bridged the gap to fully-supervised performance. We first propose to adapt two top performing objectives in this class - instance recognition and local aggregation, to the video domain. In particular, the latter approach iterates between clustering the videos in the feature space of a network and updating it to respect the cluster with a non-parametric classification loss. We observe promising performance, but qualitative analysis shows that the learned representations fail to capture motion patterns, grouping the videos based on appearance. To mitigate this issue, we turn to the heuristic-based IDT descriptors, that were manually designed to encode motion patterns in videos. We form the clusters in the IDT space, using these descriptors as a an unsupervised prior in the iterative local aggregation algorithm. Our experiments demonstrates that this approach outperform prior work on UCF101 and HMDB51 action recognition benchmarks. We also qualitatively analyze the learned representations and show that they successfully capture video dynamics.
For many years, multi-object tracking benchmarks have focused on a handful of categories. Motivated primarily by surveillance and self-driving applications, these datasets provide tracks for people, vehicles, and animals, ignoring the vast majority o f objects in the world. By contrast, in the related field of object detection, the introduction of large-scale, diverse datasets (e.g., COCO) have fostered significant progress in developing highly robust solutions. To bridge this gap, we introduce a similarly diverse dataset for Tracking Any Object (TAO). It consists of 2,907 high resolution videos, captured in diverse environments, which are half a minute long on average. Importantly, we adopt a bottom-up approach for discovering a large vocabulary of 833 categories, an order of magnitude more than prior tracking benchmarks. To this end, we ask annotators to label objects that move at any point in the video, and give names to them post factum. Our vocabulary is both significantly larger and qualitatively different from existing tracking datasets. To ensure scalability of annotation, we employ a federated approach that focuses manual effort on labeling tracks for those relevant objects in a video (e.g., those that move). We perform an extensive evaluation of state-of-the-art trackers and make a number of important discoveries regarding large-vocabulary tracking in an open-world. In particular, we show that existing single- and multi-object trackers struggle when applied to this scenario in the wild, and that detection-based, multi-object trackers are in fact competitive with user-initialized ones. We hope that our dataset and analysis will boost further progress in the tracking community.
Virtually all of deep learning literature relies on the assumption of large amounts of available training data. Indeed, even the majority of few-shot learning methods rely on a large set of base classes for pretraining. This assumption, however, does not always hold. For some tasks, annotating a large number of classes can be infeasible, and even collecting the images themselves can be a challenge in some scenarios. In this paper, we study this problem and call it Small Data setting, in contrast to Big Data. To unlock the full potential of small data, we propose to augment the models with annotations for other related tasks, thus increasing their generalization abilities. In particular, we use the richly annotated scene parsing dataset ADE20K to construct our realistic Long-tail Recognition with Diverse Supervision (LRDS) benchmark by splitting the object categories into head and tail based on their distribution. Following the standard few-shot learning protocol, we use the head classes for representation learning and the tail classes for evaluation. Moreover, we further subsample the head categories and images to generate two novel settings which we call Scarce-Class and Scarce-Image, respectively corresponding to the shortage of samples for rare classes and training images. Finally, we analyze the effect of applying various additional supervision sources under the proposed settings. Our experiments demonstrate that densely labeling a small set of images can indeed largely remedy the small data constraints.
Object tracking can be formulated as finding the right object in a video. We observe that recent approaches for class-agnostic tracking tend to focus on the finding part, but largely overlook the object part of the task, essentially doing a template matching over a frame in a sliding-window. In contrast, class-specific trackers heavily rely on object priors in the form of category-specific object detectors. In this work, we re-purpose category-specific appearance models into a generic objectness prior. Our approach converts a category-specific object detector into a category-agnostic, object-specific detector (i.e. a tracker) efficiently, on the fly. Moreover, at test time the same network can be applied to detection and tracking, resulting in a unified approach for the two tasks. We achieve state-of-the-art results on two recent large-scale tracking benchmarks (OxUvA and GOT, using external data). By simply adding a mask prediction branch, our approach is able to produce instance segmentation masks for the tracked object. Despite only using box-level information on the first frame, our method outputs high-quality masks, as evaluated on the DAVIS 17 video object segmentation benchmark.
The recent introduction of the AVA dataset for action detection has caused a renewed interest to this problem. Several approaches have been recently proposed that improved the performance. However, all of them have ignored the main difficulty of the AVA dataset - its realistic distribution of training and test examples. This dataset was collected by exhaustive annotation of human action in uncurated videos. As a result, the most common categories, such as `stand or `sit, contain tens of thousands of examples, whereas rare ones have only dozens. In this work we study the problem of action detection in a highly-imbalanced dataset. Differently from previous work on handling long-tail category distributions, we begin by analyzing the imbalance in the test set. We demonstrate that the standard AP metric is not informative for the categories in the tail, and propose an alternative one - Sampled AP. Armed with this new measure, we study the problem of transferring representations from the data-rich head to the rare tail categories and propose a simple but effective approach.
Detecting and segmenting individual objects, regardless of their category, is crucial for many applications such as action detection or robotic interaction. While this problem has been well-studied under the classic formulation of spatio-temporal gro uping, state-of-the-art approaches do not make use of learning-based methods. To bridge this gap, we propose a simple learning-based approach for spatio-temporal grouping. Our approach leverages motion cues from optical flow as a bottom-up signal for separating objects from each other. Motion cues are then combined with appearance cues that provide a generic objectness prior for capturing the full extent of objects. We show that our approach outperforms all prior work on the benchmark FBMS dataset. One potential worry with learning-based methods is that they might overfit to the particular type of objects that they have been trained on. To address this concern, we propose two new benchmarks for generic, moving object detection, and show that our model matches top-down methods on common categories, while significantly out-performing both top-down and bottom-up methods on never-before-seen categories.
One of the key limitations of modern deep learning approaches lies in the amount of data required to train them. Humans, by contrast, can learn to recognize novel categories from just a few examples. Instrumental to this rapid learning ability is the compositional structure of concept representations in the human brain --- something that deep learning models are lacking. In this work, we make a step towards bridging this gap between human and machine learning by introducing a simple regularization technique that allows the learned representation to be decomposable into parts. Our method uses category-level attribute annotations to disentangle the feature space of a network into subspaces corresponding to the attributes. These attributes can be either purely visual, like object parts, or more abstract, like openness and symmetry. We demonstrate the value of compositional representations on three datasets: CUB-200-2011, SUN397, and ImageNet, and show that they require fewer examples to learn classifiers for novel categories.
A dominant paradigm for learning-based approaches in computer vision is training generic models, such as ResNet for image recognition, or I3D for video understanding, on large datasets and allowing them to discover the optimal representation for the problem at hand. While this is an obviously attractive approach, it is not applicable in all scenarios. We claim that action detection is one such challenging problem - the models that need to be trained are large, and labeled data is expensive to obtain. To address this limitation, we propose to incorporate domain knowledge into the structure of the model, simplifying optimization. In particular, we augment a standard I3D network with a tracking module to aggregate long term motion patterns, and use a graph convolutional network to reason about interactions between actors and objects. Evaluated on the challenging AVA dataset, the proposed approach improves over the I3D baseline by 5.5% mAP and over the state-of-the-art by 4.8% mAP.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا