ترغب بنشر مسار تعليمي؟ اضغط هنا

Bosonic quantum field theories, even when regularized using a finite lattice, possess an infinite dimensional Hilbert space and, therefore, cannot be simulated in quantum computers with a finite number of qubits. A truncation of the Hilbert space is then needed and the physical results are obtained after a double limit: one to remove the truncation and another to remove the regulator (the continuum limit). A simpler alternative is to find a model with a finite dimensional Hilbert space belonging to the same universality class as the continuum model (a qubitization), so only the space continuum limit is required. A qubitization of the $1+1$ dimensional asymptotically free $O(3)$ nonlinear $sigma$-model based on ideas of non-commutative geometry was previously proposed arXiv:1903.06577 and, in this paper, we provide evidence that it reproduces the physics of the $sigma$-model both in the infrared and the ultraviolet regimes.
A new algorithm is developed allowing the Monte Carlo study of a 1 + 1 dimensional theory in real time. The main algorithmic development is to avoid the explicit calculation of the Jacobian matrix and its determinant in the update process. This impro vement has a wide applicability and reduces the cost of the update in thimble-inspired calculations from O(N^3) to less than O(N^2). As an additional feature, the algorithm leads to improved Monte Carlo proposals. We exemplify the use of the algorithm to the real time dynamics of a scalar {phi}^4 theory with weak and strong couplings.
The discovery of two neutron stars with gravitational masses $approx 2~M_odot$ has placed a strong lower limit on the maximum mass of nonrotating neutron stars, and with it a strong constraint on the properties of cold matter beyond nuclear density. Current upper mass limits are much looser. Here we note that, if most short gamma-ray bursts are produced by the coalescence of two neutron stars, and if the merger remnant collapses quickly, then the upper mass limit is constrained tightly. If the rotation of the merger remnant is limited only by mass-shedding (which seems probable based on numerical studies), then the maximum gravitational mass of a nonrotating neutron star is $approx 2-2.2~M_odot$ if the masses of neutron stars that coalesce to produce gamma-ray bursts are in the range seen in Galactic double neutron star systems. These limits would be increased by $sim 4$% in the probably unrealistic case that the remnants rotate at $sim 30$% below mass-shedding, and by $sim 15$% in the extreme case that the remnants do not rotate at all. Future coincident detection of short gamma-ray bursts with gravitational waves will strengthen these arguments because they will produce tight bounds on the masses of the components for individual events. If these limits are accurate then a reasonable fraction of double neutron star mergers might not produce gamma-ray bursts. In that case, or in the case that many short bursts are produced instead by the mergers of neutron stars with black holes, the implied rate of gravitational wave detections will be increased.
Scattering observables can be computed in lattice field theory by measuring the volume dependence of energy levels of two particle states. The dominant volume dependence, proportional to inverse powers of the volume, is determined by the phase shifts . This universal relation (Lus formula) between energy levels and phase shifts is distorted by corrections which, in the large volume limit, are exponentially suppressed. They may be sizable, however, for the volumes used in practice and they set a limit on how small the lattice can be in these studies. We estimate these corrections, mostly in the case of two nucleons. Qualitatively, we find that the exponentially suppressed corrections are proportional to the {it square} of the potential (or to terms suppressed in the chiral expansion) and the effect due to pions going ``around the world vanishes. Quantitatively, the size of the lattice should be greater than $approx(5 {fm})^3$ in order to keep finite volume corrections to the phase less than $1^circ$ for realistic pion mass.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا