ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the carrier dynamics in epitaxially grown graphene in the range of photon energies from 10 - 250 meV. The experiments complemented by microscopic modeling reveal that the carrier relaxation is significantly slowed down as the photon energy i s tuned to values below the optical phonon frequency, however, owing to the presence of hot carriers, optical phonon emission is still the predominant relaxation process. For photon energies about twice the value of the Fermi energy, a transition from pump-induced transmission to pump-induced absorption occurs due to the interplay of interband and intraband processes.
Multi-layer epitaxial graphene (MEG) is investigated using far infrared (FIR) transmission experiments in the different limits of low magnetic fields and high temperatures. The cyclotron-resonance like absorption is observed at low temperature in mag netic fields below 50 mT, allowing thus to probe the nearest vicinity of the Dirac point and to estimate the conductivity in nearly undoped graphene. The carrier mobility is found to exceed 250,000 cm$^2$/(V.s). In the limit of high temperatures, the well-defined Landau level (LL) quantization is observed up to room temperature at magnetic fields below 1 T, a phenomenon unique in solid state systems. A negligible increase in the width of the cyclotron resonance lines with increasing temperature indicates that no important scattering mechanism is thermally activated, supporting recent expectations of high room-temperature mobilities in graphene.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا