ترغب بنشر مسار تعليمي؟ اضغط هنا

126 - Paula S. Teixeira (1 , 2 , 3 2009
We present 5 to 15 micron Spitzer Infrared Spectrograph (IRS) low resolution spectral data of a candidate debris disk around an M4.5 star identified as a likely member of the ~40 Myr old cluster NGC2547. The IRS spectrum shows a silicate emission fea ture, indicating the presence of warm, small, (sub)micron-sized dust grains in the disk. Of the fifteen previously known candidate debris disks around M-type stars, the one we discuss in this paper is the first to have an observed mid-infrared spectrum and is also the first to have measured silicate emission. We combined the IRS data with ancillary data (optical, JHKs, and Spitzer InfraRed Array Camera and 24 micron data) to build the spectral energy distribution (SED) of the source. Monte Carlo radiation transfer modeling of the SED characterized the dust disk as being very flat (h100=2AU) and extending inward within at least 0.13AU of the central star. Our analysis shows that the disk is collisionally dominated and is likely a debris disk.
We present new infrared imaging of the NGC 2264 G protostellar outflow region, obtained with the InfraRed Array Camera (IRAC) on-board the Spitzer Space Telescope. A jet in the red outflow lobe (eastern lobe) is clearly detected in all four IRAC band s and, for the first time, is shown to continuously extend over the entire length of the red outflow lobe traced by CO observations. The redshifted jet also extends to a deeply embedded Class 0 source, VLA 2, confirming previous suggestions that it is the driving source of the outflow (Gomez et al. 1994). The images show that the easternmost part of the redshifted jet exhibits what appear to be multiple changes of direction. To understand the redshifted jet morphology we explore several mechanisms that could generate such apparent changes of direction. From this analysis, we conclude that the redshifted jet structure and morphology visible in the IRAC images can be largely, although not entirely, explained by a slowly precessing jet (period ~8000 yr) that lies mostly on the plane of the sky. It appears that the observed changes in the redshifted jet direction may be sufficient to account for a significant fraction of the broadening of the outflow lobe observed in the CO emission.
189 - Paula S. Teixeira 2007
We present sensitive and high angular resolution (~1) 1.3 mm continuum observations of the dusty core D-MM1 in the Spokes cluster in NGC 2264 using the Submillimeter Array. A dense micro-cluster of seven Class 0 sources was detected in a 20 x 20 regi on with masses between 0.4 to 1.2 solar masses and deconvolved sizes of about 600 AU. We interpret the 1.3 mm emission as arising from the envelopes of the Class 0 protostellar sources. The mean separation of the 11 known sources (SMA Class 0 and previously known infrared sources) within D-MM1 is considerably smaller than the characteristic spacing between sources in the larger Spokes cluster and is consistent with hierarchical thermal fragmentation of the dense molecular gas in this region.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا