ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work we conclude the analysis of our CO line survey of Luminous Infrared Galaxies (LIRGs: L_{IR}>=10^{11}L_{sol}) in the local Universe (Paper,I), by focusing on the influence of their average ISM properties on the total molecular gas mass es timates via the so-called X_{co}=M(H_2)/L_{co,1-0} factor. One-phase radiative transfer models of the global CO Spectral Line Energy Distributions (SLEDs) yield an X_{co} distribution with: <X_{co}>sim(0.6+/-0.2) M_{sol}(K km s^{-1} pc^2)^{-1} over a significant range of average gas densities, temperatures and dynamical states. The latter emerges as the most important parameter in determining X_{co}, with unbound states yielding low values and self-gravitating states the highest ones. Nevertheless in many (U)LIRGs where available higher-J CO lines (J=3--2, 4--3, and/or J=6--5) or HCN line data from the literature allow a separate assessment of the gas mass at high densities (>=10^{4} cm^{-3}) rather than a simple one-phase analysis we find that {it near-Galactic X_{co} (3-6), M_sol,(K,km^{-1},pc^2)^{-1} values become possible.} We further show that in the highly turbulent molecular gas in ULIRGs a high-density component will be common and can be massive enough for its high X_{co} to dominate the average value for the entire galaxy. ......... ...this may have thus resulted to systematic underestimates of molecular gas mass in ULIRGs.
We report results from a large molecular line survey of Luminous Infrared Galaxies (L_{IR} >= 10^{11} L_sol) in the local Universe (z<=0.1), conducted during the last decade with the James Clerk Maxwell Telescope (JCMT) and the IRAM 30-m telescope. T his work presents the CO and {13}CO line data for 36 galaxies, further augmented by multi-J total CO luminosities available for other IR-bright galaxies from the literature. This yields a sample of N=70 galaxies with the star-formation (SF) powered fraction of their IR luminosities spanning L_{IR} (10^{10}-2x10^{12}) L_sol and a wide range of morphologies. Simple comparisons of their available CO Spectral Line Energy Distributions (SLEDs) with local ones, as well as radiative transfer models discern a surprisingly wide range of average ISM conditions, with most of the surprises found in the high-excitation regime. These take the form of global CO SLEDs dominated by a very warm (T_{kin}>=100 K) and dense (n>=10^4 cm^{-3}) gas phase, involving galaxy-sized (~(few)x10^9 M_sol) gas mass reservoirs under conditions that would otherwise amount only ~1% of mass per typical SF molecular cloud in the Galaxy. Some of the highest excitation CO SLEDs are found in the so-called Ultra Luminous Infrared Galaxies and seem irreducible to ensembles of ordinary SF-powered regions. Highly supersonic turbulence and high cosmic ray (CR) energy densities rather than far-UV/optical photons or SNR-induced shocks from individual SF sites can globally warm the large amounts of dense gas found in these merger-driven starbursts and easily power their extraordinary CO line excitation.....
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا