ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the results of photometric (V band) and polarimetric observations of the blazar BL Lac during 2008--2010 using TRISPEC attached to the KANATA 1.5-m telescope in Japan. The data reveal a great deal of variability ranging from days to months with detection of strong variations in fractional polarization. The V band flux strongly anti-correlates with the degree of polarization during the first of two observing seasons but not during the second. The direction of the electric vector, however, remained roughly constant during all our observations. These results are consistent with a model with at least two emission regions being present, with the more variable component having a polarization direction nearly perpendicular to that of the relatively quiescent region so that a rising flux can produce a decline in degree of polarization. We also computed models involving helical jet structures and single transverse shocks in jets and show that they might also be able to agree with the anti-correlations between flux and fractional polarization.
The incidence of intra-night optical variability (INOV) is known to to differ significantly among different classes of powerful active galactic nuclei (AGN). A number of statistical methods have been employed in the literature for testing the presenc e of INOV in the light curves, sometimes leading to discordant results. In this paper we compare the INOV characteristics of six prominent classes of AGN, as evaluated using three commonly used statistical tests, namely the $chi^2-$test, the modified $C-$test and the $F-$test, which has recently begun to gain popularity. The AGN classes considered are: radio-quiet quasars (RQQs), radio-intermediate quasars (RIQs), lobe-dominated quasars (LDQs), low optical polarization core-dominated quasars (LPCDQs), high optical polarization core-dominated quasars (HPCDQs), and TeV blazars. Our analysis is based on a large body of AGN monitoring data, involving 262 sessions of intra-night monitoring of a total 77 AGN, using 1-2 metre class optical telescopes located in India. In order to compare the usefulness of the statistical tests, we have also subjected them to a `sanity check by comparing the number of false positives yielded by each test with the corresponding statistical prediction. The present analysis is intended to serve as a benchmark for future INOV studies of AGN of different classes.
We have used Kepler photometry to characterize variability in four radio-loud active galactic nuclei (three quasars and one object tentatively identified as a Seyfert 1.5 galaxy) on timescales from minutes to months, comparable to the light crossing time of the accretion disk around the central supermassive black hole or the base of the relativistic jet. Keplers almost continuous observations provide much better temporal coverage than is possible from ground-based observations. We report the first such data analyzed for quasars. We have constructed power spectral densities using 8 Kepler quarters of long-cadence (30-minute) data for three AGN, 6 quarters for one AGN and 2 quarters of short-cadence (1-minute) data for all four AGN. On timescales longer than about 0.2-0.6 day, we find red noise with mean power-law slopes ranging from -1.8 to -1.2, consistent with the variability originating in turbulence either behind a shock or within an accretion disk. Each AGN has a range of red noise slopes which vary slightly by month and quarter of observation. No quasi-periodic oscillations of astrophysical origin were detected. We detected several days-long flares when brightness increased by 3% - 7% in two objects. No flares on timescales of minutes to hours were detected. Our observations imply that the duty cycle for enhanced activity in these radio-loud AGN is small. These well-sampled AGN light curves provide an impetus to develop more detailed models of turbulence in jets and instabilities in accretion disks.
{Abridged} Rapid variations in optical flux are seen in many quasars and all blazars. The amount of variability in different classes of Active Galactic Nuclei has been studied extensively but many questions remain unanswered. We present the results o f a long-term programme to investigate the intra-night optical variability (INOV) of powerful flat spectrum radio core-dominated quasars (CDQs), with a focus on probing the relationship of INOV to the degree of optical polarization. We observed a sample of 16 bright CDQs showing strong broad optical emission lines and consisting of both high and low optical polarization quasars (HPCDQs and LPCDQs). We employed ARIES, IIA, IGO telescopes, to carry out {it R}-band monitoring on a total of 47 nights. Combining these INOV data with those taken from the literature, we were able to increase the sample size to 21 CDQs(12 LPCDQs and 9 HPCDQs) monitored on a total of 73 nights. As the existence of a prominent flat-spectrum radio core signifies that strong relativistic beaming is present in all these CDQs, the definitions of the two sets differ primarily in fractional optical polarization, the LPCDQs showing a very low median$ P_{op} simeq$ 0.4 per cent. Our study yields an INOV duty cycle (DC) of $sim$28 per cent for the LPCDQs and $sim 68$ percent for HPCDQs. If only strong INOV with fractional amplitude above 3 per cent is considered, the corresponding DCs are $sim$ 7 per cent and $sim$ 40 per cent, respectively.From this strong contrast between the two classes of luminous, relativistically beamed quasars, it is apparent that relativistic beaming is normally not a sufficient condition for strong INOV and a high optical polarization is the other necessary condition.
We discuss the nature of the multi-component radio continuum and HI emission associated with the nearby galaxy group comprised of two dominant ellipticals, NGC 5898 and NGC 5903, and a dwarf lenticular ESO514-G003. Striking new details of radio emiss ion are unveiled from the 2nd Data Release of the ongoing TIFR.GMRT.SKY.SURVEY (TGSS) which provides images with a resolution of ~ 24 arcsec x 18 arcsec and a typical rms noise of 5 mJy at 150 MHz. Previous radio observations of this compact triplet of galaxies include images at higher frequencies of the radio continuum as well as HI emission, the latter showing huge HI trails originating from the vicinity of NGC 5903 where HI is in a kinematically disturbed state. The TGSS 150 MHz image has revealed a large asymmetric radio halo around NGC 5903 and also established that the dwarf SO galaxy ESO514-G003 is the host to a previously known bright double radio source. The radio emission from NGC 5903 is found to have a very steep radio spectrum ({alpha} ~ -1.5) and to envelope a network of radio continuum filaments bearing a spatial relationship to the HI trails. Another noteworthy aspect of this triplet of early-type galaxies highlighted by the present study is that both its radio loud members, namely NGC 5903 and ESO514-G003, are also the only galaxies that are seen to be connected to an HI filament. This correlation is consistent with the premise that cold gas accretion is of prime importance for triggering powerful jet activity in the nuclei of early-type galaxies.
134 - B. Rani 2010
The emission from blazars is known to be variable at all wavelengths. The flux variability is often accompanied by spectral changes. Spectral energy distribution (SED) changes must be associated with changes in the spectra of emitting electrons and/o r the physical parameters of the jet. Meaningful modeling of blazar broadband spectra is required to understand the extreme conditions within the emission region. Not only is the broadband SED crucial, but also information about its variability is needed to understand how the highest states of emission occur and how they differ from the low states. This may help in discriminating between models. Here we present the results of our SED modeling of the blazar S5 0716+714 during various phases of its activity. The SEDs are classified into different bins depending on the optical brightness state of the source.
114 - Alok C. Gupta 2009
We withdraw our claim that a component in an XMM-Newton satellite light curve of the BL Lacertae object S5 0716 + 714 shows quasi-periodic oscillations (QPOs) of $sim$30 minutes. Although both our original periodogram and wavelet analyses gave consis tent results, the data do not lead to a statistically significant result once red-noise at low frequencies is properly taken into account for periodogram analyses.
71 - Bindu Rani 2009
We have performed a structure function analysis of the Rossi X-ray Timing Explorer All Sky Monitor data to search for variability in 24 blazars using data trains that each exceed 12 years. Although 20 of them show nominal periods though this techniqu e, the great majority of these `periods are clearly related to yearly variations arising from the instrument.Nonetheless, an apparently real periodic component of about 17 days was detected for the blazar AO 0235+164 and it was confirmed by discrete correlation function and periodogram analyses. For 1ES 2321+419 a component of variability with a near periodicity of about 420 days was detected by all of these methods. We discuss several possible explanations for these nearly periodic components and conclude that they most likely arise from the intersections of a shock propagating down a relativistic jet that possesses a helical structure.
We present results of a periodicity search of 20 intra-day variable optical light curves of the blazar S5 0716+714, selected from a database of 102 light curves spanning over three years. We use a wavelet analysis technique along with a randomization test and find strong candidates for nearly periodic variations in eight light curves, with probabilities ranging from 95% to >99%. This is the first good evidence for periodic, or more-precisely, quasi-periodic, components in the optical intra-day variable light curves of any blazar. Such periodic flux changes support the idea that some active galactic nuclei variability, even in blazars, is based on accretion disk fluctuations or oscillations. These intra-day variability time scales are used to estimate that the central black hole of the blazar S5 0716+714 has a mass > 2.5 times 10^6$ M$_{odot}$. As we did not find any correlations between the flux levels and intra-day variability time scales, it appears that more than one emission mechanism is at work in this blazar.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا