ترغب بنشر مسار تعليمي؟ اضغط هنا

Cygnus A, the nearest truly powerful radio galaxy, resides at the centre of a massive galaxy cluster. Chandra X-ray observations reveal its cocoon shocks, radio lobe cavities and an X-ray jet, which are discussed here. It is argued that X-ray emissio n from the outer regions of the cocoon shocks is nonthermal. The X-ray jets are best interpreted as synchrotron emission, suggesting that they, rather than the radio jets, are the path of energy flow from the nucleus to the hotspots. In that case, a model shows that the jet flow is non-relativistic and carries in excess of one solar mass per year.
We present a $250,$ks Chandra observation of the cluster merger A2034 with the aim of understanding the nature of a sharp edge previously characterized as a cold front. The new data reveal that the edge is coherent over a larger opening angle and is significantly more bow-shock-shaped than previously thought. Within $sim 27,$degrees about the axis of symmetry of the edge the density, temperature and pressure drop abruptly by factors of $1.83^{+0.09}_{-0.08}$, $1.85^{+0.41}_{-0.41}$ and $3.4^{+0.8}_{-0.7}$, respectively. This is inconsistent with the pressure equilibrium expected of a cold front and we conclude that the edge is a shock front. We measure a Mach number $M = 1.59^{+0.06}_{-0.07}$ and corresponding shock velocity $v_{rm shock}simeq 2057,$km/s. Using spectra collected at the MMT with the Hectospec multi-object spectrograph we identify 328 spectroscopically confirmed cluster members. Significantly, we find a local peak in the projected galaxy density associated with a bright cluster galaxy which is located just ahead of the nose of the shock. The data are consistent with a merger viewed within $sim 23,$degrees of the plane of the sky. The merging subclusters are now moving apart along a north-south axis approximately $0.3,$Gyr after a small impact parameter core passage. The gas core of the secondary subcluster, which was driving the shock, appears to have been disrupted by the merger. Without a driving piston we speculate that the shock is dying. Finally, we propose that the diffuse radio emission near the shock is due to the revival of pre-existing radio plasma which has been overrun by the shock.
141 - Paul E. J. Nulsen 2013
We present new Chandra observations of Abell 2199 that show evidence of gas sloshing due to a minor merger, as well as impacts of the radio source, 3C 338, hosted by the central galaxy, NGC 6166, on the intracluster gas. The new data are consistent w ith previous evidence of a Mach 1.46 shock 100 from the cluster center, although there is still no convincing evidence for the expected temperature jump. Other interpretations of this feature are possible, but none is fully satisfactory. Large scale asymmetries, including enhanced X-ray emission 200 southwest of the cluster center and a plume of low entropy, enriched gas reaching 50 to the north of the center, are signatures of gas sloshing induced by core passage of a merging subcluster about 400 Myr ago. An association between the unusual radio ridge and low entropy gas are consistent with this feature being the remnant of a former radio jet that was swept away from the AGN by gas sloshing. A large discrepancy between the energy required to produce the 100 shock and the enthalpy of the outer radio lobes of 3C 338 suggests that the lobes were formed by a more recent, less powerful radio outburst. Lack of evidence for shocks in the central 10 indicates that the power of the jet now is some two orders of magnitude smaller than when the 100 shock was formed.
We present an analysis of the structures and dynamics of the merging cluster Abell~1201, which has two sloshing cold fronts around a cooling core, and an offset gas core approximately 500kpc northwest of the center. New Chandra and XMM-Newton data re veal a region of enhanced brightness east of the offset core, with breaks in surface brightness along its boundary to the north and east. This is interpreted as a tail of gas stripped from the offset core. Gas in the offset core and the tail is distinguished from other gas at the same distance from the cluster center chiefly by having higher density, hence lower entropy. In addition, the offset core shows marginally lower temperature and metallicity than the surrounding area. The metallicity in the cool core is high and there is an abrupt drop in metallicity across the southern cold front. We interpret the observed properties of the system, including the placement of the cold fronts, the offset core and its tail in terms of a simple merger scenario. The offset core is the remnant of a merging subcluster, which first passed pericenter southeast of the center of the primary cluster and is now close to its second pericenter passage, moving at ~1000 km/s. Sloshing excited by the merger gave rise to the two cold fronts and the disposition of the cold fronts reveals that we view the merger from close to the plane of the orbit of the offset core.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا