ترغب بنشر مسار تعليمي؟ اضغط هنا

Let F be the cubic field of discriminant -23 and O its ring of integers. Let Gamma be the arithmetic group GL_2 (O), and for any ideal n subset O let Gamma_0 (n) be the congruence subgroup of level n. In a previous paper, two of us (PG and DY) comput ed the cohomology of various Gamma_0 (n), along with the action of the Hecke operators. The goal of that paper was to test the modularity of elliptic curves over F. In the present paper, we complement and extend this prior work in two ways. First, we tabulate more elliptic curves than were found in our prior work by using various heuristics (old and new cohomology classes, dimensions of Eisenstein subspaces) to predict the existence of elliptic curves of various conductors, and then by using more sophisticated search techniques (for instance, torsion subgroups, twisting, and the Cremona-Lingham algorithm) to find them. We then compute further invariants of these curves, such as their rank and representatives of all isogeny classes. Our enumeration includes conjecturally the first elliptic curves of ranks 1 and 2 over this field, which occur at levels of norm 719 and 9173 respectively.
In this paper we prove that the counting polynomials of certain torus orbits in products of partial flag varieties coincides with the Kac polynomials of supernova quivers, which arise in the study of the moduli spaces of certain irregular meromorphic connections on trivial bundles over the projective line. We also prove that these polynomials can be expressed as a specialization of Tutte polynomials of certain graphs providing a combinatorial proof of the non-negativity of their coefficients.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا