ترغب بنشر مسار تعليمي؟ اضغط هنا

162 - Paul Romatschke 2021
I derive an exact integral expression for the ratio of shear viscosity over entropy density $frac{eta}{s}$ for the massless (critical) O(N) model at large N with quartic interactions. The calculation is set up and performed entirely from the field th eory side using a non-perturbative resummation scheme that captures all contributions to leading order in large N. In 2+1d, $frac{eta}{s}$ is evaluated numerically at all values of the coupling. For infinite coupling, I find $frac{eta}{s}simeq 0.42(1)times N$. I show that this strong coupling result for the viscosity is universal for a large class of interacting bosonic O(N) models.
146 - Paul Romatschke 2020
Out-of-time-ordered correlators (OTOCs) have been suggested as a means to study quantum chaotic behavior in various systems. In this work, I calculate OTOCs for the quantum mechanical anharmonic oscillator with quartic potential, which is classically integrable and has a Poisson-like energy-level distribution. For low temperature, OTOCs are periodic in time, similar to results for the harmonic oscillator and the particle in a box. For high temperature, OTOCs exhibit a rapid (but power-like) rise at early times, followed by saturation consistent with $2langle x^2rangle_T langle p^2rangle_T$ at late times. At high temperature, the spectral form factor decreases at early times, bounces back and then reaches a plateau with strong fluctuations.
108 - Paul Romatschke 2019
To set the stage, I discuss the $beta$-function of the massless O(N) model in three dimensions, which can be calculated exactly in the large N limit. Then, I consider SU(N) Yang-Mills theory in 2+1 space-time dimensions. Relating the $beta$-function to the expectation value of the action in lattice gauge theory, and the latter to the trace of the energy-momentum tensor, I show that $frac{d ln g^2/mu}{dln mu}=-1$ for all $g$ and all N in one particular renormalization scheme. As a consequence, I find that the Yang-Mills $beta$-function in three dimensions must have the same sign for all finite and positive bare coupling parameters in any renormalization scheme, and all non-trivial infrared fixed points are unreachable in practice.
In 2+1 dimensions, QED becomes exactly solvable for all values of the fermion charge $e$ in the limit of many fermions $N_fgg 1$. We present results for the free energy density at finite temperature $T$ to next-to-leading-order in large $N_f$. In the naive large $N_f$ limit, we uncover an apparently UV-divergent contribution to the vacuum energy at order ${cal O}(e^6 N_f^3)$, which we argue to become a finite contribution of order ${cal O}(N_f^4 e^6)$ when resumming formally higher-order $1/N_f$ contributions. We find the finite-temperature free energy to be well-behaved for all values of the dimensionless coupling $e^2N_f/T$, and to be bounded by the free energy of $N_f$ free fermions and non-interacting QED3, respectively. We invite follow-up studies from finite-temperature lattice gauge theory at large but fixed $N_f$ to test our results in the regime $e^2N_f/Tgg 1$.
107 - Paul Romatschke 2019
I consider quantum electrodynamics with many electrons in 2+1 space-time dimensions at finite temperature. The relevant dimensionless interaction parameter for this theory is the fine structure constant divided by the temperature. The theory is solva ble at any value of the coupling, in particular for very weak (high temperature) and infinitely strong coupling (corresponding to the zero temperature limit). Concentrating on the photon, each of its physical degrees of freedom at infinite coupling only contributes half of the free-theory value to the entropy. These fractional degrees of freedom are reminiscent of what has been observed in other strongly coupled systems (such as N=4 SYM), and bear similarity to the fractional Quantum Hall effect, potentially suggesting connections between these phenomena. The results found for QED3 are fully consistent with the expectations from particle-vortex duality.
We revisit spatially flat FLRW cosmology in light of recent advances in standard model relativistic fluid dynamics. Modern fluid dynamics requires the presence of curvature-matter terms in the energy-momentum tensor for consistency. These terms are l inear in the Ricci scalar and tensor, such that the corresponding cosmological model is referred to as ``Ricci cosmology. No cosmological constant is included, there are no inflaton fields, bulk viscosity is assumed to be zero and we only employ standard Einstein gravity. Analytic solutions to Ricci cosmology are discussed, and we find that it is possible to support an early-time inflationary universe using only well-known ingredients from the Standard Model of physics and geometric properties of space-time.
232 - Paul Romatschke 2019
In this work, a second-order transport coefficient (the curvature-matter coupling $kappa$) is calculated exactly for the 3+1d O(N) model at large N for any coupling value. Since the theory is `trivial in the sense of possessing a Landau pole, the res ult for $kappa$ only is free from cut-off artifacts much below the Landau pole in the effective field theory sense. Nevertheless, this leaves a large range of coupling values where this transport coefficient can be determined non-perturbatively and analytically with little ambiguity. Along with thermodyamic results also calculated in this work, I expect exact large N results to provide good quantitative predictions for N=1 scalar field theory with $phi^4$ interaction.
Pure CFTs have vanishing $beta$-function at any value of the coupling. One example of a pure CFT is the O(N) Wess-Zumino model in 2+1 dimensions in the large N limit. This model can be analytically solved at finite temperature for any value of the co upling, and we find that its entropy density at strong coupling is exactly equal to 31/35 of the non-interacting Stefan-Boltzmann result. We show that a large class of theories with equal numbers of N-component fermions and bosons, supersymmetric or not, for a large class of interactions, exhibit the same universal ratio. For unequal numbers of fermions and bosons we find that the strong-weak thermodynamic ratio is bounded to lie in between 4/5 and 1.
156 - Paul Romatschke 2019
A famous example of gauge/gravity duality is the result that the entropy density of strongly coupled ${cal N}=4$ SYM in four dimensions for large N is exactly 3/4 of the Stefan-Boltzmann limit. In this work, I revisit the massless O(N) model in 2+1 d imensions, which is analytically solvable at finite temperature $T$ for all couplings $lambda$ in the large N limit. I find that the entropy density monotonically decreases from the Stefan-Boltzmann limit at $lambda=0$ to exactly 4/5 of the Stefan-Boltzmann limit at $lambda=infty$. Calculating the retarded energy-momentum tensor correlator in the scalar channel at $lambda=infty$, I find that it has two logarithmic branch cuts originating at $omega=pm 4 T ln frac{1+sqrt{5}}{2}$, but no singularities in the whole complex frequency plane. I show that the ratio 4/5 and the location of the branch points both are universal within a large class of bosonic CFTs in 2+1 dimensions.
73 - Paul Romatschke 2019
Recently, non-perturbative approximate solutions were presented that go beyond the well-known mean-field resummation. In this work, these non-perturbative approximations are used to calculate finite temperature equilibrium properties for scalar $phi^ 4$ theory in two dimensions such as the pressure, entropy density and speed of sound. Unlike traditional approaches, it is found that results are well-behaved for arbitrary temperature/coupling strength, are independent of the choice of the renormalization scale $barmu^2$, and are apparently converging as the resummation level is increased. Results also suggest the presence of a possible analytic cross-over from the high-temperature to the low-temperature regime based on the change in the thermal entropy density.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا