ترغب بنشر مسار تعليمي؟ اضغط هنا

370 - Marc Lilley 2015
Although the inflationary paradigm is the most widely accepted explanation for the current cosmological observations, it does not necessarily correspond to what actually happened in the early stages of our Universe. To decide on this issue, two paths can be followed: first, all the possible predictions it makes must be derived thoroughly and compared with available data, and second, all imaginable alternatives must be ruled out. Leaving the first task to all other contributors of this volume, we concentrate here on the second option, focusing on the bouncing alternatives and their consequences.
560 - Xian Gao 2014
The simplest possible classical model leading to a cosmological bounce is examined in the light of the non-Gaussianities it can generate. Concentrating solely on the transition between contraction and expansion, and assuming initially purely Gaussian perturbations at the end of the contracting phase, we find that the bounce acts as a source such that the resulting value for the post-bounce $f_{mathrm{NL}}$ may largely exceed all current limits, to the point of potentially casting doubts on the validity of the perturbative expansion. We conjecture that if one can assume that the non-Gaussianity production depends only on the bouncing behavior of the scale factor and not on the specifics of the model examined, then many realistic models in which a nonsingular classical bounce takes place could exhibit a generic non-Gaussianity excess problem that would need to be addressed for each case.
We first examine the microstructure of a cosmic string endowed with two simple Abelian currents. This microstructure depends on two state parameters. We then provide the macroscopic description of such a string and show that it depends on an addition al Lorentz-invariant state parameter that relates the two currents. We find that in most of the parameter space, the two-current string is essentially equivalent to the single current-carrying string, i.e., only one field condenses onto the defect. In the regions where two currents are present, we find that as far as stability is concerned, one can approximate the dynamics with good accuracy using an analytic model based on either a logarithmic (on the electric side, i.e., for timelike currents) or a rational (on the magnetic side, i.e., for spacelike currents) worldsheet Lagrangian.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا