ترغب بنشر مسار تعليمي؟ اضغط هنا

The recent discovery that the Fe-K line luminosities and energy centroids observed in nearby SNRs are a strong discriminant of both progenitor type and circumstellar environment has implications for our understanding of supernova progenitor evolution . Using models for the chemical composition of core-collapse supernova ejecta, we model the dynamics and thermal X-ray emission from shocked ejecta and circumstellar material, modeled as an $r^{-2}$ wind, to ages of 3000 years. We compare the X-ray spectra expected from these models to observations made with the Suzaku satellite. We also model the dynamics and X-ray emission from Type Ia progenitor models. We find a clear distinction in Fe-K line energy centroid between core-collapse and Type Ia models. The core-collapse supernova models predict higher Fe-K line centroid energies than the Type Ia models, in agreement with observations. We argue that the higher line centroids are a consequence of the increased densities found in the circumstellar environment created by the expansion of the slow-moving wind from the massive progenitors.
166 - Laura A. Lopez 2013
Recent evidence has suggested that the supernova remnant (SNR) 0104-72.3 in the Small Magellanic Cloud (SMC) may be the result of a prompt Type Ia SN based on enhanced iron abundances and its association with a star-forming region. In this paper, we present evidence that SNR 0104-72.3 arose from a jet-driven bipolar core-collapse SN. Specifically, we use serendipitous Chandra X-ray Observatory data of SNR 0104-72.3 taken due to its proximity to the calibration source SNR E0102-72.3. We analyze 56 Advanced CCD Imaging Spectrometer (ACIS) observations of SNR 0104-72.3 to produce imaging and spectra with an effective exposure of 528.6 ks. We demonstrate that SNR 0104-72.3 is highly elliptical relative to other nearby young SNRs, suggesting a core-collapse SN origin. Furthermore, we compare ejecta abundances derived from spectral fits to nucleosynthetic yields of Type Ia and core-collapse (CC) SNe, and we find that the iron, neon, and silicon abundances are consistent with either a spherical CC SN of a 18-20 solar mass progenitor or an aspherical CC SN of a 25 solar mass progenitor. We show that the star-formation history at the site of SNR 0104-72.3 is also consistent with a CC origin. Given the bipolar morphology of the SNR, we favor the aspherical CC SN scenario. This result may suggest jet-driven SNe occur frequently in the low-metallicity environment of the SMC, consistent with the observational and theoretical work on broad-line Type Ic SNe and long-duration gamma-ray bursts.
The shocks of supernova remnants (SNRs) are believed to accelerate particles to cosmic ray (CR) energies. The amplification of the magnetic field due to CRs propagating in the shock region is expected to have an impact on both the emission from the a ccelerated particle population, as well as the acceleration process itself. Using a 95 ks observation with the Advanced CCD Imaging Spectrometer (ACIS) onboard the Chandra X-ray Observatory, we map and characterize the synchrotron emitting material in the northwestern region of RCW 86. We model spectra from several different regions, filamentary and diffuse alike, where emission appears dominated by synchrotron radiation. The fine spatial resolution of Chandra allows us to obtain accurate emission profiles across 3 different non-thermal rims in this region. The narrow width (l = 10-30) of these filaments constrains the minimum magnetic field strength at the post-shock region to be approximately 80 {mu}G.
We present multi-wavelength observations of the radio magnetar PSR J1622-4950 and its environment. Observations of PSR J1622-4950 with Chandra (in 2007 and 2009) and XMM (in 2011) show that the X-ray flux of PSR J1622-4950 has decreased by a factor o f ~50 over 3.7 years, decaying exponentially with a characteristic time of 360 +/- 11 days. This behavior identifies PSR J1622-4950 as a possible addition to the small class of transient magnetars. The X-ray decay likely indicates that PSR J1622-4950 is recovering from an X-ray outburst that occurred earlier in 2007, before the 2007 Chandra observations. Observations with the Australia Telescope Compact Array show strong radio variability, including a possible radio flaring event at least one and a half years after the 2007 X-ray outburst that may be a direct result of this X-ray event. Radio observations with the Molonglo Observatory Synthesis Telescope reveal that PSR J1622-4950 is 8 southeast of a diffuse radio arc, G333.9+0.0, which appears non-thermal in nature and which could possibly be a previously undiscovered supernova remnant. If G333.9+0.0 is a supernova remnant then the estimates of its size and age, combined with the close proximity and reasonable implied velocity of PSR J1622-4950, suggests that these two objects could be physically associated.
137 - Joseph D. Gelfand 2009
A pulsar wind nebula inside a supernova remnant provides a unique insight into the properties of the central neutron star, the relativistic wind powered by its loss of rotational energy, its progenitor supernova, and the surrounding environment. In t his paper, we present a new semi-analytic model for the evolution of such a pulsar wind nebula which couples the dynamical and radiative evolution of the pulsar wind nebulae, traces the evolution of the pulsar wind nebulae throughout the lifetime of the supernova remnant produced by the progenitor explosion, and predicts both the dynamical and radiative properties of the pulsar wind nebula during this period. We also discuss the expected evolution for a particular set of these parameters, and show it reproduces many puzzling features of known young and old pulsar wind nebulae. The model also predicts spectral features during different phases of its evolution detectable with new radio and gamma-ray observing facilities. Finally, this model has implications for determining if pulsar wind nebulae can explain the recent measurements of the cosmic ray positron fraction by PAMELA and the cosmic ray lepton spectrum by ATIC and HESS.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا