ترغب بنشر مسار تعليمي؟ اضغط هنا

The origin of ultra-compact dwarfs (UCDs)--objects larger and more massive than typical globular clusters (GCs), but more compact than typical dwarf galaxies--has been hotly debated in the 15 years since their discovery. Even whether UCDs should be c onsidered galactic in origin, or simply the most extreme GCs, is not yet settled. We present the dynamical properties of 97 spectroscopically confirmed UCDs (rh >~10 pc) and 911 GCs associated with central cD galaxy of the Virgo cluster, M87. Our UCDs, of which 89% have M_star > ~2X10^6 M_sun and 92% are as blue as the classic blue GCs, nearly triple the sample of previous confirmed Virgo UCDs, providing by far the best opportunity for studying the global dynamics of a UCD system. We found that (1) UCDs have a surface number density profile that is shallower than that of the blue GCs in the inner ~ 70 kpc and as steep as that of the red GCs at larger radii; (2) UCDs exhibit a significantly stronger rotation than the GCs, and the blue GCs seem to have a velocity field that is more consistent with that of the surrounding dwarf ellipticals than with that of UCDs; (3) UCDs have a radially increasing orbital anisotropy profile, and are tangentially-biased at radii < ~ 40 kpc and radially-biased further out. In contrast, the blue GCs become more tangentially-biased at larger radii beyond ~ 40 kpc; (4) GCs with M_star > 2X10^6 M_sun have rotational properties indistinguishable from the less massive ones, suggesting that it is the size, instead of mass, that differentiates UCDs from GCs as kinematically distinct populations. We conclude that most UCDs in M87 are not consistent with being merely the most luminous and extended examples of otherwise normal GCs. The radially-biased orbital structure of UCDs at large radii is in general agreement with the tidally threshed dwarf galaxy scenario.
The Advanced Camera for Surveys (ACS) Fornax Cluster Survey is a Hubble Space Telescope program to image 43 early-type galaxies in the Fornax cluster, using the F475W and F850LP bandpasses of the ACS. We employ both 1D and 2D techniques to characteri ze the properties of the stellar nuclei in these galaxies, defined as the central luminosity excesses relative to a Sersic model fitted to the underlying host. We find 72+/-13% of our sample (31 galaxies) to be nucleated, with only three of the nuclei offset by more than 0.5 from their galaxy photocenter, and with the majority of nuclei having colors bluer than their hosts. The nuclei are observed to be larger, and brighter, than typical Fornax globular clusters, and to follow different structural scaling relations. A comparison of our results to those from the ACS Virgo Cluster Survey reveals striking similarities in the properties of the nuclei belonging to these different environments. We briefly review a variety of proposed formation models and conclude that, for the low-mass galaxies in our sample, the most important mechanism for nucleus growth is probably infall of star clusters through dynamical friction, while for higher mass galaxies, gas accretion triggered by mergers, accretions and tidal torques is likely to dominate, with the relative importance of these two processes varying smoothly as a function of galaxy mass. Some intermediate-mass galaxies in our sample show a complexity in their inner structure that may be the signature of hybrid nuclei that arose through parallel formation channels.
We analyse HST surface brightness profiles for 143 early-type galaxies in the Virgo and Fornax Clusters. Sersic models provide accurate descriptions of the global profiles with a notable exception: the observed profiles deviate systematically inside a characteristic break radius of R_b ~ 0.02R_e where R_e is the effective radius of the galaxy. The sense of the deviation is such that bright galaxies (M_B < -20) typically show central light deficits with respect to the inward extrapolation of the Sersic model, while the great majority of low- and intermediate-luminosity galaxies (-19.5 < M_B < -15) show central light excesses; galaxies occupying a narrow range of intermediate luminosities (-20 < M_B < -19.5) are usually well fitted by Sersic models over all radii. The slopes of the central surface brightness profiles, when measured at fixed fractions of R_e, vary smoothly as a function of galaxy luminosity in a manner that depends sensitively on the choice of measurement radius. We show that a recent claim of strong bimodality in slope is likely an artifact of the galaxy selection function used in that study. To provide a more robust characterization of the inner regions of galaxies, we introduce a parameter that describes the central luminosity deficit or excess relative to the inward extrapolation of the outer Sersic model. We find that this parameter varies smoothly over the range of ~ 720 in blue luminosity spanned by the Virgo and Fornax sample galaxies, with no evidence for a dichotomy. We argue that the central light excesses (nuclei) in M_B > -19 galaxies may be the analogs of the dense central cores that are predicted by some numerical simulations to form via gas inflows. (ABRIDGED)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا